UNION ALL 两个具有不同列类型的 SELECTs - 预期行为?

UNION ALL two SELECTs with different column types - expected behaviour?(UNION ALL 两个具有不同列类型的 SELECTs - 预期行为?)
本文介绍了UNION ALL 两个具有不同列类型的 SELECTs - 预期行为?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

当我们对具有不同数据类型的两个表执行 UNION 时,由于 SQL Standard 的预期行为是什么:

What is the expected behaviour due to SQL Standard when we perform UNION on two tables with different data types:

create table "tab1" ("c1" varchar(max));
create table "tab2" ("c3" integer);
insert into tab1 values(N'asd'), (N'qweqwe');
insert into tab2 values(123), (345);
select
c_newname as myname
from
(
select "c1" as c_newname from "tab1"
union all
select "c3" from "tab2"
) as T_UNI;

MS SQL Server 给出

将 varchar 值 'asd' 转换为数据类型时转换失败内部

Conversion failed when converting the varchar value 'asd' to data type int.

但是标准中定义了什么?

but what is defined in the standard?

推荐答案

如果你想在每个查询中使用 union all 列需要具有相同的类型.C3必须转换为 varchar,因为 c1 是 varchar.尝试以下解决方案

If you want to use union all columns in every query need to have the same type.C3 must be converteted to varchar because c1 is varchar. Try below solution

create table "tab1" ("c1" varchar(max));
create table "tab2" ("c3" integer);
insert into tab1 values(N'asd'), (N'qweqwe');
insert into tab2 values(123), (345);
select
c_newname as myname
from
(
select "c1" as c_newname from "tab1"
union all
select cast("c3"  as varchar(max)) from "tab2"
) as T_UNI;

我用 "tab1" 替换了 "tab3" - 我认为这是错字.

I replaced "tab3" with "tab1" - I think it's typo.

这篇关于UNION ALL 两个具有不同列类型的 SELECTs - 预期行为?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

ibtmp1是非压缩的innodb临时表的独立表空间,通过innodb_temp_data_file_path参数指定文件的路径,文件名和大小,默认配置为ibtmp1:12M:autoextend,也就是说在文件系统磁盘足够的情况下,这个文件大小是可以无限增长的。 为了避免ibtmp1文件无止境的暴涨导致
SQL query to group by day(按天分组的 SQL 查询)
What does SQL clause quot;GROUP BY 1quot; mean?(SQL 子句“GROUP BY 1是什么意思?意思是?)
MySQL groupwise MAX() returns unexpected results(MySQL groupwise MAX() 返回意外结果)
MySQL SELECT most frequent by group(MySQL SELECT 按组最频繁)
Include missing months in Group By query(在 Group By 查询中包含缺失的月份)