<legend id='3qVly'><style id='3qVly'><dir id='3qVly'><q id='3qVly'></q></dir></style></legend>
<i id='3qVly'><tr id='3qVly'><dt id='3qVly'><q id='3qVly'><span id='3qVly'><b id='3qVly'><form id='3qVly'><ins id='3qVly'></ins><ul id='3qVly'></ul><sub id='3qVly'></sub></form><legend id='3qVly'></legend><bdo id='3qVly'><pre id='3qVly'><center id='3qVly'></center></pre></bdo></b><th id='3qVly'></th></span></q></dt></tr></i><div id='3qVly'><tfoot id='3qVly'></tfoot><dl id='3qVly'><fieldset id='3qVly'></fieldset></dl></div>
  • <tfoot id='3qVly'></tfoot>
          <bdo id='3qVly'></bdo><ul id='3qVly'></ul>

        <small id='3qVly'></small><noframes id='3qVly'>

        具有多列的 SQL Pivot

        SQL Pivot with multiple columns(具有多列的 SQL Pivot)
        <i id='DNAKH'><tr id='DNAKH'><dt id='DNAKH'><q id='DNAKH'><span id='DNAKH'><b id='DNAKH'><form id='DNAKH'><ins id='DNAKH'></ins><ul id='DNAKH'></ul><sub id='DNAKH'></sub></form><legend id='DNAKH'></legend><bdo id='DNAKH'><pre id='DNAKH'><center id='DNAKH'></center></pre></bdo></b><th id='DNAKH'></th></span></q></dt></tr></i><div id='DNAKH'><tfoot id='DNAKH'></tfoot><dl id='DNAKH'><fieldset id='DNAKH'></fieldset></dl></div>
        1. <legend id='DNAKH'><style id='DNAKH'><dir id='DNAKH'><q id='DNAKH'></q></dir></style></legend>
            <bdo id='DNAKH'></bdo><ul id='DNAKH'></ul>
              1. <small id='DNAKH'></small><noframes id='DNAKH'>

                  <tbody id='DNAKH'></tbody>
                • <tfoot id='DNAKH'></tfoot>

                  本文介绍了具有多列的 SQL Pivot的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  需要有关 sql server 2008 中的 pivot 子句的帮助.我有一张包含此信息的表格:

                  Need help with the pivot clause in sql server 2008. I have a table with this info:

                  Weekno DayOfWeek FromTime ToTime1 2 10:00 14:001 3 10:00 14:002 3 08:00 13:002 4 09:00 13:002 5 14:00 22:003 1 06:00 13:003 4 06:00 13:003 5 14:00 22:00

                  Weekno    DayOfWeek     FromTime    ToTime
                  1         2             10:00       14:00
                  1         3             10:00       14:00
                  2         3             08:00       13:00
                  2         4             09:00       13:00
                  2         5             14:00       22:00
                  3         1             06:00       13:00
                  3         4             06:00       13:00
                  3         5             14:00       22:00
                  

                  我想把它转换成一个看起来像这样的表格:<前>周开始1结束1开始2结束2开始3结束3开始4结束4开始5结束5开始6结束6开始7结束71 10:00 14:00 10:00 14:002 08:00 13:00 09:00 13:00 14:00 22:003 06:00 13:00 06:00 13:00 14:00 22:00

                  I want to convert this into a table that looks like this:

                  Week    Start1    End1    Start2    End2    Start3    End3    Start4    End4    Start5    End5    Start6    End6    Start7    End7
                  1                         10:00     14:00   10:00     14:00
                  2                                           08:00     13:00   09:00     13:00   14:00     22:00
                  3       06:00     13:00                                       06:00     13:00   14:00     22:00
                  

                  有什么办法可以处理数据透视查询吗?请用一个例子来回答如何做.

                  Is there any way to do with a pivot query? Please write respond with an example on how to do it.

                  我很感激在这方面的任何帮助.提前致谢.

                  I appreciate any kind of help on this. Thanks in advance.

                  推荐答案

                  这是枢轴版本:

                  https://data.stackexchange.com/stackoverflow/query/7295/so3241450

                  -- SO3241450
                  
                  CREATE TABLE #SO3241450 (
                      Weekno int NOT NULL
                      ,DayOfWeek int NOT NULL
                      ,FromTime time NOT NULL
                      ,ToTime time NOT NULL
                  )
                  
                  INSERT INTO #SO3241450 VALUES
                  (1, 2, '10:00', '14:00')
                  ,(1, 3, '10:00', '14:00')
                  ,(2, 3, '08:00', '13:00')
                  ,(2, 4, '09:00', '13:00')
                  ,(2, 5, '14:00', '22:00')
                  ,(3, 1, '06:00', '13:00')
                  ,(3, 4, '06:00', '13:00')
                  ,(3, 5, '14:00', '22:00')
                  
                  ;WITH Base AS (
                      SELECT Weekno, DayOfWeek, FromTime AS [Start], ToTime AS [End]
                      FROM #SO3241450
                  )
                  ,norm AS (
                  SELECT Weekno, ColName + CONVERT(varchar, DayOfWeek) AS ColName, ColValue
                  FROM Base
                  UNPIVOT (ColValue FOR ColName IN ([Start], [End])) AS pvt
                  )
                  SELECT *
                  FROM norm
                  PIVOT (MIN(ColValue) FOR ColName IN ([Start1], [End1], [Start2], [End2], [Start3], [End3], [Start4], [End4], [Start5], [End5], [Start6], [End6], [Start7], [End7])) AS pvt
                  

                  这篇关于具有多列的 SQL Pivot的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  ibtmp1是非压缩的innodb临时表的独立表空间,通过innodb_temp_data_file_path参数指定文件的路径,文件名和大小,默认配置为ibtmp1:12M:autoextend,也就是说在文件系统磁盘足够的情况下,这个文件大小是可以无限增长的。 为了避免ibtmp1文件无止境的暴涨导致
                  SQL query to group by day(按天分组的 SQL 查询)
                  What does SQL clause quot;GROUP BY 1quot; mean?(SQL 子句“GROUP BY 1是什么意思?意思是?)
                  MySQL groupwise MAX() returns unexpected results(MySQL groupwise MAX() 返回意外结果)
                  MySQL SELECT most frequent by group(MySQL SELECT 按组最频繁)
                  Include missing months in Group By query(在 Group By 查询中包含缺失的月份)

                  <small id='1eIJH'></small><noframes id='1eIJH'>

                  • <i id='1eIJH'><tr id='1eIJH'><dt id='1eIJH'><q id='1eIJH'><span id='1eIJH'><b id='1eIJH'><form id='1eIJH'><ins id='1eIJH'></ins><ul id='1eIJH'></ul><sub id='1eIJH'></sub></form><legend id='1eIJH'></legend><bdo id='1eIJH'><pre id='1eIJH'><center id='1eIJH'></center></pre></bdo></b><th id='1eIJH'></th></span></q></dt></tr></i><div id='1eIJH'><tfoot id='1eIJH'></tfoot><dl id='1eIJH'><fieldset id='1eIJH'></fieldset></dl></div>
                    1. <tfoot id='1eIJH'></tfoot>

                        • <bdo id='1eIJH'></bdo><ul id='1eIJH'></ul>

                              <tbody id='1eIJH'></tbody>

                            <legend id='1eIJH'><style id='1eIJH'><dir id='1eIJH'><q id='1eIJH'></q></dir></style></legend>