Mapreduce 组合器

Mapreduce Combiner(Mapreduce 组合器)
本文介绍了Mapreduce 组合器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

限时送ChatGPT账号..

我有一个简单的 mapreduce 代码,其中包含 mapper、reducer 和 combiner.映射器的输出被传递给组合器.但是对于reducer,不是combiner的输出,而是mapper的输出.

I have a simple mapreduce code with mapper, reducer and combiner. The output from mapper is passed to combiner. But to the reducer, instead of output from combiner,output from mapper is passed.

请帮忙

代码:

package Combiner;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class AverageSalary
{
public static class Map extends  Mapper<LongWritable, Text, Text, DoubleWritable> 
{
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException 
    {    
        String[] empDetails= value.toString().split(",");
        Text unit_key = new Text(empDetails[1]);      
        DoubleWritable salary_value = new DoubleWritable(Double.parseDouble(empDetails[2]));
        context.write(unit_key,salary_value);    

    }  
}
public static class Combiner extends Reducer<Text,DoubleWritable, Text,Text> 
{
    public void reduce(final Text key, final Iterable<DoubleWritable> values, final Context context)
    {
        String val;
        double sum=0;
        int len=0;
        while (values.iterator().hasNext())
        {
            sum+=values.iterator().next().get();
            len++;
        }
        val=String.valueOf(sum)+":"+String.valueOf(len);
        try {
            context.write(key,new Text(val));
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}
public static class Reduce extends Reducer<Text,Text, Text,Text> 
{
    public void reduce (final Text key, final Text values, final Context context)
    {
        //String[] sumDetails=values.toString().split(":");
        //double average;
        //average=Double.parseDouble(sumDetails[0]);
        try {
            context.write(key,values);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}
public static void main(String args[])
{
    Configuration conf = new Configuration();
    try
    {
     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    
     if (otherArgs.length != 2) {      
         System.err.println("Usage: Main <in> <out>");      
         System.exit(-1);    }    
     Job job = new Job(conf, "Average salary");    
     //job.setInputFormatClass(KeyValueTextInputFormat.class);    
     FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    
     FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    
     job.setJarByClass(AverageSalary.class);    
     job.setMapperClass(Map.class);    
     job.setCombinerClass(Combiner.class);
     job.setReducerClass(Reduce.class);    
     job.setOutputKeyClass(Text.class);    
     job.setOutputValueClass(Text.class);    

        System.exit(job.waitForCompletion(true) ? 0 : -1);
    } catch (ClassNotFoundException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (IOException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}

}

推荐答案

你好像忘记了combiner的重要属性:

It seems that you forgot about important property of a combiner:

键/值的输入类型和输出类型键/值必须相同.

the input types for the key/value and the output types of the key/value need to be the same.

您不能接受 Text/DoubleWritable 并返回 Text/Text.我建议您使用 Text 而不是 DoubleWritable,并在 Combiner 中进行适当的解析.

You can't take in a Text/DoubleWritable and return a Text/Text. I suggest you to use Text Instead DoubleWritable, and do proper parsing inside Combiner.

这篇关于Mapreduce 组合器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

How to send data to COM PORT using JAVA?(如何使用 JAVA 向 COM PORT 发送数据?)
How to make a report page direction to change to quot;rtlquot;?(如何使报表页面方向更改为“rtl?)
Use cyrillic .properties file in eclipse project(在 Eclipse 项目中使用西里尔文 .properties 文件)
Is there any way to detect an RTL language in Java?(有没有办法在 Java 中检测 RTL 语言?)
How to load resource bundle messages from DB in Java?(如何在 Java 中从 DB 加载资源包消息?)
How do I change the default locale settings in Java to make them consistent?(如何更改 Java 中的默认语言环境设置以使其保持一致?)