Pandas Rolling Window - datetime64[ns] are not implemented( pandas 滚动窗口 - datetime64[ns] 未实现)
问题描述
我正在尝试使用 Python/Pandas 构建一些图表.我有每秒采样的数据.这是一个示例:
索引、时间、值31362, 1975-05-07 07:59:18, 36.15161231363, 1975-05-07 07:59:19, 36.18136831364, 1975-05-07 07:59:20, 36.19719531365, 1975-05-07 07:59:21, 36.15141331366, 1975-05-07 07:59:22, 36.13800931367, 1975-05-07 07:59:23, 36.14296231368, 1975-05-07 07:59:24, 36.122680
我需要创建各种窗口来查看数据.10、100、1000 等.不幸的是,当我尝试窗口化整个数据框时,出现以下错误...
NotImplementedError: 此 dtype datetime64[ns] 的滚动操作未实现
我查看了以下文档:
I'm attempting to use Python/Pandas to build some charts. I have data that is sampled every second. Here is a sample:
Index, Time, Value
31362, 1975-05-07 07:59:18, 36.151612
31363, 1975-05-07 07:59:19, 36.181368
31364, 1975-05-07 07:59:20, 36.197195
31365, 1975-05-07 07:59:21, 36.151413
31366, 1975-05-07 07:59:22, 36.138009
31367, 1975-05-07 07:59:23, 36.142962
31368, 1975-05-07 07:59:24, 36.122680
I need to create a variety of windows to look at the data. 10, 100, 1000 etc. Unfortunately when I attempt to window the entire data frame I get the error below...
NotImplementedError: ops for Rolling for this dtype datetime64[ns] are not implemented
I checked out these docs: http://pandas.pydata.org/pandas-docs/stable/computation.html as a reference, and they appear to be doing this on date ranges. I did notice that the data type between what they have and what I have is different.
Is there an easy way to do this?
This is ideally what I'm trying to do:
tmp = data.rolling(window=2)
tmp.mean()
I'm using plotly to plot the raw data and then the windowed data on top of it. My goal is to find ideal windows for identifying cleaner trends in the data removing some of the noise.
Thanks!
Additional Notes:
I think I need to take my data from this format:
pandas.core.series.Series to this one:
pandas.tseries.index.DatetimeIndex
Setup
from StringIO import StringIO
import pandas as pd
text = """Index,Time,Value
31362,1975-05-07 07:59:18,36.151612
31363,1975-05-07 07:59:19,36.181368
31364,1975-05-07 07:59:20,36.197195
31365,1975-05-07 07:59:21,36.151413
31366,1975-05-07 07:59:22,36.138009
31367,1975-05-07 07:59:23,36.142962
31368,1975-05-07 07:59:24,36.122680"""
df = pd.read_csv(StringIO(text), index_col=0, parse_dates=[1])
df.rolling(2).mean()
NotImplementedError: ops for Rolling for this dtype datetime64[ns] are not implemented
First off, this is confirmation of @BrenBarn's comment and he should get the credit if he decides to post an answer. BrenBarn, if you decide to answer, I'll delete this post.
Explanation
Pandas has no idea what a rolling mean of date values ought to be. df.rolling(2).mean()
is attempting to roll and average over both the Time
and Value
columns. The error is politely (or impolitely, depending on your perspective) telling you that you're trying something non-sensical.
Solution
Move the Time
column to the index and then... well that's it.
df.set_index('Time').rolling(2).mean()
这篇关于 pandas 滚动窗口 - datetime64[ns] 未实现的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:pandas 滚动窗口 - datetime64[ns] 未实现


基础教程推荐
- 如何在Python中绘制多元函数? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01