Time-weighted average with Pandas(Pandas 的时间加权平均值)
问题描述
在 Pandas 0.8 中计算 TimeSeries 时间加权平均值的最有效方法是什么?例如,假设我想要如下创建的 df.y - df.x
的时间加权平均值:
What's the most efficient way to calculate the time-weighted average of a TimeSeries in Pandas 0.8? For example, say I want the time-weighted average of df.y - df.x
as created below:
import pandas
import numpy as np
times = np.datetime64('2012-05-31 14:00') + np.timedelta64(1, 'ms') * np.cumsum(10**3 * np.random.exponential(size=10**6))
x = np.random.normal(size=10**6)
y = np.random.normal(size=10**6)
df = pandas.DataFrame({'x': x, 'y': y}, index=times)
我觉得这个操作应该很容易做,但是我尝试过的每件事都涉及到几次混乱和缓慢的类型转换.
I feel like this operation should be very easy to do, but everything I've tried involves several messy and slow type conversions.
推荐答案
您可以将 df.index
转换为整数并使用它来计算平均值.有一个快捷方式 asi8
属性返回一个 int64 值数组:
You can convert df.index
to integers and use that to compute the average. There is a shortcut asi8
property that returns an array of int64 values:
np.average(df.y - df.x, weights=df.index.asi8)
这篇关于Pandas 的时间加权平均值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Pandas 的时间加权平均值


基础教程推荐
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01