Problems during Skeletonization image for extracting contours(用于提取轮廓的骨架化图像过程中的问题)
问题描述
我找到了这段代码来获取骨架化图像.我有一张圆形图片(https://docs.google.com/file/d/0ByS6Z5WRz-h2RXdzVGtXUTlPSGc/edit?usp=sharing).
I found this code to get a skeletonized image. I have a circle image (https://docs.google.com/file/d/0ByS6Z5WRz-h2RXdzVGtXUTlPSGc/edit?usp=sharing).
img = cv2.imread(nomeimg,0)
size = np.size(img)
skel = np.zeros(img.shape,np.uint8)
ret,img = cv2.threshold(img,127,255,0)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
done = False
while( not done):
eroded = cv2.erode(img,element)
temp = cv2.dilate(eroded,element)
temp = cv2.subtract(img,temp)
skel = cv2.bitwise_or(skel,temp)
img = eroded.copy()
zeros = size - cv2.countNonZero(img)
if zeros==size:
done = True
print("skel")
print(skel)
cv2.imshow("skel",skel)
cv2.waitKey(0)
问题是图像结果不是骨架"而是一组点!我的目的是在对图像进行骨架化后提取轮廓周长.如何编辑我的代码来解决它?使用 cv2.findContours 找骨架圈正确吗?
The problem is that image result is not a "skeleton" but a set of points! My purpose was to extract contour perimeter after i have skeletonized the image. How can I edit my code to solve it? It is correct using cv2.findContours to find skeleton circle?
推荐答案
需要反白&黑色,然后先调用 cv2.dilate
填充所有的洞:
You need to reverse white & black, and fill all the holes by call cv2.dilate
first:
import numpy as np
import cv2
img = cv2.imread("e_5.jpg",0)
size = np.size(img)
skel = np.zeros(img.shape,np.uint8)
ret,img = cv2.threshold(img,127,255,0)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
img = 255 - img
img = cv2.dilate(img, element, iterations=3)
done = False
while( not done):
eroded = cv2.erode(img,element)
temp = cv2.dilate(eroded,element)
temp = cv2.subtract(img,temp)
skel = cv2.bitwise_or(skel,temp)
img = eroded.copy()
zeros = size - cv2.countNonZero(img)
if zeros==size:
done = True
结果如下:
但是,结果并不好,因为有很多差距.以下算法更好,它使用scipy.ndimage.morphology
中的函数:
But, the result is not good, because there are many gaps. The following algorithm is better, it uses functions in scipy.ndimage.morphology
:
import scipy.ndimage.morphology as m
import numpy as np
import cv2
def skeletonize(img):
h1 = np.array([[0, 0, 0],[0, 1, 0],[1, 1, 1]])
m1 = np.array([[1, 1, 1],[0, 0, 0],[0, 0, 0]])
h2 = np.array([[0, 0, 0],[1, 1, 0],[0, 1, 0]])
m2 = np.array([[0, 1, 1],[0, 0, 1],[0, 0, 0]])
hit_list = []
miss_list = []
for k in range(4):
hit_list.append(np.rot90(h1, k))
hit_list.append(np.rot90(h2, k))
miss_list.append(np.rot90(m1, k))
miss_list.append(np.rot90(m2, k))
img = img.copy()
while True:
last = img
for hit, miss in zip(hit_list, miss_list):
hm = m.binary_hit_or_miss(img, hit, miss)
img = np.logical_and(img, np.logical_not(hm))
if np.all(img == last):
break
return img
img = cv2.imread("e_5.jpg",0)
ret,img = cv2.threshold(img,127,255,0)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
img = 255 - img
img = cv2.dilate(img, element, iterations=3)
skel = skeletonize(img)
imshow(skel, cmap="gray", interpolation="nearest")
结果是:
这篇关于用于提取轮廓的骨架化图像过程中的问题的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:用于提取轮廓的骨架化图像过程中的问题


基础教程推荐
- 哪些 Python 包提供独立的事件系统? 2022-01-01
- 使 Python 脚本在 Windows 上运行而不指定“.py";延期 2022-01-01
- 使用Python匹配Stata加权xtil命令的确定方法? 2022-01-01
- 如何在 Python 中检测文件是否为二进制(非文本)文 2022-01-01
- 合并具有多索引的两个数据帧 2022-01-01
- 将 YAML 文件转换为 python dict 2022-01-01
- Python 的 List 是如何实现的? 2022-01-01
- 使用 Google App Engine (Python) 将文件上传到 Google Cloud Storage 2022-01-01
- 如何在Python中绘制多元函数? 2022-01-01
- 症状类型错误:无法确定关系的真值 2022-01-01