Python built-in sum function vs. for loop performance(Python 内置 sum 函数 vs. for 循环性能)
问题描述
我注意到 Python 的内置 sum 函数在对 1 000 000 个整数列表求和时比 for 循环快大约 3 倍:
I noticed that Python's built-in sum function is roughly 3x faster than a for loop when summing a list of 1 000 000 integers:
import timeit
def sum1():
s = 0
for i in range(1000000):
s += i
return s
def sum2():
return sum(range(1000000))
print 'For Loop Sum:', timeit.timeit(sum1, number=10)
print 'Built-in Sum:', timeit.timeit(sum2, number=10)
# Prints:
# For Loop Sum: 0.751425027847
# Built-in Sum: 0.266746997833
这是为什么呢?sum是如何实现的?
Why is that? How is sum implemented?
推荐答案
速度差异实际上大于 3 倍,但是您通过首先创建一个包含 100 万个整数的巨大内存列表来减慢任一版本的速度.将其与计时赛分开:
The speed difference is actually greater than 3 times, but you slow down either version by first creating a huge in-memory list of 1 million integers. Separate that out of the time trials:
>>> import timeit
>>> def sum1(lst):
... s = 0
... for i in lst:
... s += i
... return s
...
>>> def sum2(lst):
... return sum(lst)
...
>>> values = range(1000000)
>>> timeit.timeit('f(lst)', 'from __main__ import sum1 as f, values as lst', number=100)
3.457869052886963
>>> timeit.timeit('f(lst)', 'from __main__ import sum2 as f, values as lst', number=100)
0.6696369647979736
现在速度差已经上升到5倍以上了.
The speed difference has risen to over 5 times now.
for 循环作为解释的 Python 字节码执行.sum() 完全在 C 代码中循环.解释字节码和 C 代码之间的速度差异很大.
A for loop is executed as interpreted Python bytecode. sum() loops entirely in C code. The speed difference between interpreted bytecode and C code is large.
此外,如果 C 代码可以将总和保留在 C 类型中,则确保不会创建新的 Python 对象;这适用于 int 和 float 结果.
In addition, the C code makes sure not to create new Python objects if it can keep the sum in C types instead; this works for int and float results.
反汇编的 Python 版本是这样做的:
The Python version, disassembled, does this:
>>> import dis
>>> def sum1():
... s = 0
... for i in range(1000000):
... s += i
... return s
...
>>> dis.dis(sum1)
2 0 LOAD_CONST 1 (0)
3 STORE_FAST 0 (s)
3 6 SETUP_LOOP 30 (to 39)
9 LOAD_GLOBAL 0 (range)
12 LOAD_CONST 2 (1000000)
15 CALL_FUNCTION 1
18 GET_ITER
>> 19 FOR_ITER 16 (to 38)
22 STORE_FAST 1 (i)
4 25 LOAD_FAST 0 (s)
28 LOAD_FAST 1 (i)
31 INPLACE_ADD
32 STORE_FAST 0 (s)
35 JUMP_ABSOLUTE 19
>> 38 POP_BLOCK
5 >> 39 LOAD_FAST 0 (s)
42 RETURN_VALUE
除了解释器循环比 C 慢之外,INPLACE_ADD 将创建一个新的整数对象(超过 255,CPython 将小的 int 对象缓存为单例).
Apart from the interpreter loop being slower than C, the INPLACE_ADD will create a new integer object (past 255, CPython caches small int objects as singletons).
您可以在Python mercurial 代码存储库,但它在评论中明确指出:
You can see the C implementation in the Python mercurial code repository, but it explicitly states in the comments:
/* Fast addition by keeping temporary sums in C instead of new Python objects.
Assumes all inputs are the same type. If the assumption fails, default
to the more general routine.
*/
这篇关于Python 内置 sum 函数 vs. for 循环性能的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Python 内置 sum 函数 vs. for 循环性能
基础教程推荐
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 求两个直方图的卷积 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 包装空间模型 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
