Appending two dataframes with same columns, different order(附加两个具有相同列、不同顺序的数据框)
问题描述
我有两个 pandas 数据框.
I have two pandas dataframes.
noclickDF = DataFrame([[0, 123, 321], [0, 1543, 432]],
columns=['click', 'id', 'location'])
clickDF = DataFrame([[1, 123, 421], [1, 1543, 436]],
columns=['click', 'location','id'])
我只是想加入这样最终的 DF 看起来像:
I simply want to join such that the final DF will look like:
click | id | location
0 123 321
0 1543 432
1 421 123
1 436 1543
如您所见,两个原始 DF 的列名相同,但顺序不同.列中也没有连接.
As you can see the column names of both original DF's are the same, but not in the same order. Also there is no join in a column.
推荐答案
你也可以使用 pd.concat:
In [36]: pd.concat([noclickDF, clickDF], ignore_index=True)
Out[36]:
click id location
0 0 123 321
1 0 1543 432
2 1 421 123
3 1 436 1543
在底层,DataFrame.append 调用 pd.concat.DataFrame.append 包含处理各种类型输入的代码,例如系列、元组、列表和字典.如果你给它传递一个DataFrame,它会直接传递给pd.concat,所以使用pd.concat会更直接一些.
Under the hood, DataFrame.append calls pd.concat.
DataFrame.append has code for handling various types of input, such as Series, tuples, lists and dicts. If you pass it a DataFrame, it passes straight through to pd.concat, so using pd.concat is a bit more direct.
这篇关于附加两个具有相同列、不同顺序的数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:附加两个具有相同列、不同顺序的数据框
基础教程推荐
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 包装空间模型 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
