Run TensorFlow 2.0 on CPU without AVX(在没有 AVX 的 CPU 上运行 TensorFlow 2.0)
问题描述
我想安装和使用 TensorFlow 2.0.我有一台装有 Windows 10 的 PC、Geforce GTX 1080 Ti GPU 和旧的 Intel Xeon X5660 CPU,不支持 AVX.
I would like to install and use TensorFlow 2.0. I have a PC with Windows 10, a Geforce GTX 1080 Ti GPU and an old Intel Xeon X5660 CPU, which doesn't support AVX.
现在,我的问题是每当我尝试在这台机器上运行任何 TensorFlow 代码时都会出现 DLL 导入错误.我知道 此存储库 为旧版 CPU 提供解决方案,但不幸的是我找不到任何TensorFlow 2.0 包在那里.
Now, my problem is that there is a DLL Import error whenever I attempt to run any TensorFlow code on this machine. I know about this repository providing a solution for legacy CPUs but unfortunately I can't find any TensorFlow 2.0 packages there.
任何帮助将不胜感激.谢谢.
Any help would be highly appreciated. Thank you.
推荐答案
仓库中有一个全新的wheel文件:
There is a brand new wheel file in the repository:
https://github.com/fo40225/tensorflow-windows-wheel
以下文件运行良好:
https://github.com/fo40225/tensorflow-windows-wheel/blob/master/2.0.0/py37/GPU/cuda101cudnn76sse2/tensorflow_gpu-2.0.0-cp37-cp37m-win_amd64.whl
如 Readme.md 中所述:
As stated in the Readme.md:
第一次执行TensorFlow时,编译需要时间."
"It will take time for compiling when execute TensorFlow first time."
看看这个测试:
>>>import tensorflow as tf
tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
>>>print(tf.__version__)
2.0.0
>>>from tensorflow.python.client import device_lib
>>>print(device_lib.list_local_devices())
tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.531
GPU libraries are statically linked, skip dlopen check.
Adding visible gpu devices: 0
Device interconnect StreamExecutor with strength 1 edge matrix:
0
0: N
Created TensorFlow device (/device:GPU:0 with 1340 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 4456898788177247918
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 1406107238
locality {
bus_id: 1
links {
}
}
incarnation: 3224787151756357043
physical_device_desc: "device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1"
]
这篇关于在没有 AVX 的 CPU 上运行 TensorFlow 2.0的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:在没有 AVX 的 CPU 上运行 TensorFlow 2.0
基础教程推荐
- 修改列表中的数据帧不起作用 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 包装空间模型 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
