如何在 django 中模拟用户和请求

2022-10-14Python开发问题
1

本文介绍了如何在 django 中模拟用户和请求的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有与请求对象或用户对象交互的 django 代码.例如:

I have django code that interacts with request objects or user objects. For instance something like:

foo_model_instance = models.get_or_create_foo_from_user(request.user)

如果您要使用 django python shell 或在单元测试中进行测试,您会在其中传递什么?这里只需一个 User 对象就可以了,但对模拟请求对象的需求也经常出现.

If you were going to test with the django python shell or in a unittest, what would you pass in there? Here simply a User object will do, but the need for a mock request object also comes up frequently.

对于外壳或单元测试:

  • 如何模拟用户?
  • 如何模拟请求?

推荐答案

对于请求,我会使用 RequestFactory 包含在 Django 中.

For request, I would use RequestFactory included with Django.

from django.test.client import RequestFactory
rf = RequestFactory()
get_request = rf.get('/hello/')
post_request = rf.post('/submit/', {'foo': 'bar'})

对于用户,我会按照@ozan 的建议使用 django.contrib.auth.models.User 并且可能使用 factory boy 提高速度(使用 factory boy 你可以选择不保存到 DB)

for users, I would use django.contrib.auth.models.User as @ozan suggested and maybe with factory boy for speed (with factory boy you can choose to not to save to DB)

这篇关于如何在 django 中模拟用户和请求的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10

按10分钟间隔对 pandas 数据帧进行分组
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)...
2024-08-22 Python开发问题
11