How does pytorch broadcasting work?(pytorch 广播是如何工作的?)
问题描述
torch.add(torch.ones(4,1), torch.randn(4))产生一个尺寸为:torch.Size([4,4]).
有人可以提供这背后的逻辑吗?
示例 2::
T 和 F 分别代表 True 和 False 并指示我们允许广播的维度(来源:
torch.add(torch.ones(4,1), torch.randn(4))
produces a Tensor with size: torch.Size([4,4]).
Can someone provide a logic behind this?
PyTorch broadcasting is based on numpy broadcasting semantics which can be understood by reading numpy broadcasting rules or PyTorch broadcasting guide. Expounding the concept with an example would be intuitive to understand it better. So, please see the example below:
In [27]: t_rand
Out[27]: tensor([ 0.23451, 0.34562, 0.45673])
In [28]: t_ones
Out[28]:
tensor([[ 1.],
[ 1.],
[ 1.],
[ 1.]])
Now for torch.add(t_rand, t_ones), visualize it like:
# shape of (3,)
tensor([ 0.23451, 0.34562, 0.45673])
# (4, 1) | | | | | | | | | | | |
tensor([[ 1.],____+ | | | ____+ | | | ____+ | | |
[ 1.],______+ | | ______+ | | ______+ | |
[ 1.],________+ | ________+ | ________+ |
[ 1.]])_________+ __________+ __________+
which should give the output with tensor of shape (4,3) as:
# shape of (4,3)
In [33]: torch.add(t_rand, t_ones)
Out[33]:
tensor([[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673]])
Also, note that we get exactly the same result even if we pass the arguments in a reverse order as compared to the previous one:
# shape of (4, 3)
In [34]: torch.add(t_ones, t_rand)
Out[34]:
tensor([[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673],
[ 1.23451, 1.34562, 1.45673]])
Anyway, I prefer the former way of understanding for more straightforward intuitiveness.
For pictorial understanding, I culled out more examples which are enumerated below:
Example-1:
Example-2::
T and F stand for True and False respectively and indicate along which dimensions we allow broadcasting (source: Theano).
Example-3:
Here are some shapes where the array b is broadcasted appropriately to match the shape of the array a.
这篇关于pytorch 广播是如何工作的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:pytorch 广播是如何工作的?
基础教程推荐
- 修改列表中的数据帧不起作用 2022-01-01
- 求两个直方图的卷积 2022-01-01
- 包装空间模型 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
