PyTorch: passing numpy array for weight initialization(PyTorch:传递 numpy 数组以进行权重初始化)
问题描述
我想用 np 数组初始化 RNN 的参数.
I'd like to initialize the parameters of RNN with np arrays.
在下面的例子中,我想将w传递给rnn的参数.我知道pytorch提供了很多初始化方法,比如Xavier、uniform等,但是有没有办法通过传递numpy数组来初始化参数?
In the following example, I want to pass w to the parameters of rnn. I know pytorch provides many initialization methods like Xavier, uniform, etc., but is there way to initialize the parameters by passing numpy arrays?
import numpy as np
import torch as nn
rng = np.random.RandomState(313)
w = rng.randn(input_size, hidden_size).astype(np.float32)
rnn = nn.RNN(input_size, hidden_size, num_layers)
推荐答案
首先,让我们注意 nn.RNN 有不止一个权重变量,c.f.文档:
First, let's note that nn.RNN has more than one weight variable, c.f. the documentation:
变量:
weight_ih_l[k]–k层的可学习输入隐藏权重,形状为(hidden_size * input_size)用于k = 0.否则,形状是(hidden_size * hidden_size)weight_hh_l[k]-k层的可学习隐藏权重,形状为(hidden_size * hidden_size)bias_ih_l[k]–k层的可学习输入隐藏偏差,形状为(hidden_size)bias_hh_l[k]–k层的可学习隐藏偏差,形状为(hidden_size)
weight_ih_l[k]– the learnable input-hidden weights of thek-th layer, of shape(hidden_size * input_size)fork = 0. Otherwise, the shape is(hidden_size * hidden_size)weight_hh_l[k]– the learnable hidden-hidden weights of thek-th layer, of shape(hidden_size * hidden_size)bias_ih_l[k]– the learnable input-hidden bias of thek-th layer, of shape(hidden_size)bias_hh_l[k]– the learnable hidden-hidden bias of thek-th layer, of shape(hidden_size)
现在,这些变量中的每一个(参数 实例)是 nn.RNN 实例的属性.您可以通过两种方式访问和编辑它们,如下所示:
Now, each of these variables (Parameter instances) are attributes of your nn.RNN instance. You can access them, and edit them, two ways, as show below:
- 解决方案 1:按名称访问所有 RNN
Parameter属性(rnn.weight_hh_lK、rnn.weight_ih_lK等):
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
def set_nn_parameter_data(layer, parameter_name, new_data):
param = getattr(layer, parameter_name)
param.data = new_data
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "weight_hh_l{}".format(i),
torch.from_numpy(weights_hh_layer_i))
set_nn_parameter_data(rnn, "weight_ih_l{}".format(i),
torch.from_numpy(weights_ih_layer_i))
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "bias_hh_l{}".format(i),
torch.from_numpy(bias_hh_layer_i))
set_nn_parameter_data(rnn, "bias_ih_l{}".format(i),
torch.from_numpy(bias_ih_layer_i))
- 方案二:通过
rnn.all_weights列表属性访问所有RNNParameter属性: - Solution 2: Accessing all the RNN
Parameterattributes throughrnn.all_weightslist attribute:
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
rnn.all_weights[i][0].data = torch.from_numpy(weights_ih_layer_i)
rnn.all_weights[i][1].data = torch.from_numpy(weights_hh_layer_i)
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
rnn.all_weights[i][2].data = torch.from_numpy(bias_ih_layer_i)
rnn.all_weights[i][3].data = torch.from_numpy(bias_hh_layer_i)
这篇关于PyTorch:传递 numpy 数组以进行权重初始化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:PyTorch:传递 numpy 数组以进行权重初始化
基础教程推荐
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 包装空间模型 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
- 求两个直方图的卷积 2022-01-01
