Python:如何模拟 datetime.utcnow()?

Python: How do I mock datetime.utcnow()?(Python:如何模拟 datetime.utcnow()?)
本文介绍了Python:如何模拟 datetime.utcnow()?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有以下内容:

from datetime import datetime

def get_report_month_key():
    month_for_report = datetime.utcnow()
    return month_for_report.strftime("%Y%m") 

我如何模拟 datetime.utcnow() 以便我可以在这个函数上编写单元测试?

How do I mock datetime.utcnow() so that I can write unit test on this function?

尝试阅读此一个但是我无法让它在 utcnow() 上为我工作

Tried reading this one but I am unable to get it working for me on utcnow()

推荐答案

在你的测试文件中:

from yourfile import get_report_month_key
import mock
import unittest
from datetime import datetime

class TestCase(unittest.TestCase):

    @mock.patch('yourfile.datetime')
    def test_dt(self, mock_dt):
        mock_dt.utcnow = mock.Mock(return_value=datetime(1901, 12, 21))
        r = get_report_month_key()
        self.assertEqual('190112', r)

这篇关于Python:如何模拟 datetime.utcnow()?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)