Python psycopg2 没有插入到 postgresql 表中

Python psycopg2 not inserting into postgresql table(Python psycopg2 没有插入到 postgresql 表中)
本文介绍了Python psycopg2 没有插入到 postgresql 表中的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在使用以下方法尝试将记录插入到 postgresql 数据库表中,但它不起作用.我没有收到任何错误,但表中没有记录.我需要提交还是什么?我正在使用通过 Bitnami djangostack 安装的 postgresql 数据库.

I'm using the following to try and insert a record into a postgresql database table, but it's not working. I don't get any errors, but there are no records in the table. Do I need a commit or something? I'm using the postgresql database that was installed with the Bitnami djangostack install.

import psycopg2

try:
    conn = psycopg2.connect("dbname='djangostack' user='bitnami' host='localhost' password='password'")
except:
    print "Cannot connect to db"

cur = conn.cursor()

try:
    cur.execute("""insert into cnet values ('r', 's', 'e', 'c', 'w', 's', 'i', 'd', 't')""")
except:
    print "Cannot insert"

推荐答案

如果不想每条记录都提交到数据库,可以添加以下行:

If don't want to have to commit each entry to the database, you can add the following line:

conn.autocommit = True

所以你得到的代码是:

import psycopg2

try:
    conn = psycopg2.connect("dbname='djangostack' user='bitnami' host='localhost' password='password'")
    conn.autocommit = True
except:
    print "Cannot connect to db"

cur = conn.cursor()

try:
    cur.execute("""insert into cnet values ('r', 's', 'e', 'c', 'w', 's', 'i', 'd', 't')""")
except:
    print "Cannot insert"

这篇关于Python psycopg2 没有插入到 postgresql 表中的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)