pandas 中的 sum() 和 count() 有什么区别?

What is the difference between sum() and count() in pandas?( pandas 中的 sum() 和 count() 有什么区别?)
本文介绍了 pandas 中的 sum() 和 count() 有什么区别?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

你能帮我理解下面提到的陈述之间的区别吗?鉴于 Survived 列包含二进制数据 (0,1),它们给出了不同的答案:

Can you help me understand the difference between the statements mentioned below? Given that Survived column contains binary data (0,1), they give different answers:

df_train[df_train.Sex == 'female'].Survived.count()
df_train[df_train.Sex == 'female'].Survived.sum()

推荐答案

sum() for like 1+0 = 1. 如果数据是 3 和 3 则返回 6.

sum() is for like 1+0 = 1. if data is 3 and 3 then it return 6.

count() 返回行数.所以它会返回 2.

count() return number of row. so it will return 2.

简单:)

这篇关于 pandas 中的 sum() 和 count() 有什么区别?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)