本文介绍了pandas-通过对列和索引的值求和来合并两个数据框的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我想按索引和列合并两个数据集.
I want to merge two datasets by indexes and columns.
我想合并整个数据集
df1 = pd.DataFrame([[1, 0, 0], [0, 2, 0], [0, 0, 3]],columns=[1, 2, 3])
df1
1 2 3
0 1 0 0
1 0 2 0
2 0 0 3
df2 = pd.DataFrame([[0, 0, 1], [0, 2, 0], [3, 0, 0]],columns=[1, 2, 3])
df2
1 2 3
0 0 0 1
1 0 2 0
2 3 0 0
我已经尝试过这段代码,但我得到了这个错误.我不明白为什么它将轴的大小显示为错误.
I have tried this code but I got this error. I can't get why it shows the size of axis as an error.
df_sum = pd.concat([df1, df2])
.groupby(df2.index)[df2.columns]
.sum().reset_index()
ValueError: Grouper and axis must be same length
这就是我预期的 df_sum 的输出
This was what I expected the output of df_sum
df_sum
1 2 3
0 1 0 1
1 0 4 0
2 3 0 3
推荐答案
你可以使用:df1.add(df2, fill_value=0).它会将 df2 添加到 df1 中,并且它会将 NAN 值替换为 0.
You can use :df1.add(df2, fill_value=0). It will add df2 into df1 also it will replace NAN value with 0.
>>> import numpy as np
>>> import pandas as pd
>>> df2 = pd.DataFrame([(10,9),(8,4),(7,np.nan)], columns=['a','b'])
>>> df1 = pd.DataFrame([(1,2),(3,4),(5,6)], columns=['a','b'])
>>> df1.add(df2, fill_value=0)
a b
0 11 11.0
1 11 8.0
2 12 6.0
这篇关于pandas-通过对列和索引的值求和来合并两个数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
The End


大气响应式网络建站服务公司织梦模板
高端大气html5设计公司网站源码
织梦dede网页模板下载素材销售下载站平台(带会员中心带筛选)
财税代理公司注册代理记账网站织梦模板(带手机端)
成人高考自考在职研究生教育机构网站源码(带手机端)
高端HTML5响应式企业集团通用类网站织梦模板(自适应手机端)