Easiest way to read csv files with multiprocessing in Pandas(在 Pandas 中使用多处理读取 csv 文件的最简单方法)
问题描述
这是我的问题.
带有一堆 .csv 文件(或其他文件).Pandas 是一种读取它们并保存为 Dataframe 格式的简单方法.但是当文件量很大时,我想通过多处理读取文件以节省一些时间.
Here is my question.
With bunch of .csv files(or other files). Pandas is an easy way to read them and save into Dataframe format. But when the amount of files was huge, I want to read the files with multiprocessing to save some time.
我手动将文件分成不同的路径.单独使用:
I manually divide the files into different path. Using severally:
os.chdir("./task_1")
files = os.listdir('.')
files.sort()
for file in files:
filename,extname = os.path.splitext(file)
if extname == '.csv':
f = pd.read_csv(file)
df = (f.VALUE.as_matrix()).reshape(75,90)
然后将它们组合起来.
如何使用 pool 运行它们来解决我的问题?
任何建议将不胜感激!
How to run them with pool to achieve my problem?
Any advice would be appreciated!
推荐答案
使用Pool:
import os
import pandas as pd
from multiprocessing import Pool
# wrap your csv importer in a function that can be mapped
def read_csv(filename):
'converts a filename to a pandas dataframe'
return pd.read_csv(filename)
def main():
# get a list of file names
files = os.listdir('.')
file_list = [filename for filename in files if filename.split('.')[1]=='csv']
# set up your pool
with Pool(processes=8) as pool: # or whatever your hardware can support
# have your pool map the file names to dataframes
df_list = pool.map(read_csv, file_list)
# reduce the list of dataframes to a single dataframe
combined_df = pd.concat(df_list, ignore_index=True)
if __name__ == '__main__':
main()
这篇关于在 Pandas 中使用多处理读取 csv 文件的最简单方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:在 Pandas 中使用多处理读取 csv 文件的最简单方法
基础教程推荐
- 使用大型矩阵时禁止 Pycharm 输出中的自动换行符 2022-01-01
- PANDA VALUE_COUNTS包含GROUP BY之前的所有值 2022-01-01
- 修改列表中的数据帧不起作用 2022-01-01
- 无法导入 Pytorch [WinError 126] 找不到指定的模块 2022-01-01
- 在同一图形上绘制Bokeh的烛台和音量条 2022-01-01
- 包装空间模型 2022-01-01
- PermissionError: pip 从 8.1.1 升级到 8.1.2 2022-01-01
- 在Python中从Azure BLOB存储中读取文件 2022-01-01
- 求两个直方图的卷积 2022-01-01
- Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙? 2022-01-01
