对产品和分组求和

Sum product and groupby(对产品和分组求和)
本文介绍了对产品和分组求和的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个如下所示的数据框:

I have a dataframe that looks like this:

allHoldingsFund

allHoldingsFund

      BrokerBestRate  notional_current  DistanceBestRate
0           CITI          7.859426e+05          0.023194
1           WFPBS         3.609674e+06         -0.023041
2           WFPBS         1.488828e+06         -0.023041
3           JPM           3.484168e+05         -0.106632
4           CITI          6.088499e+05          0.023194
5           WFPBS         8.665558e+06         -0.023041
6           WFPBS         4.219563e+05         -0.023041

我正在尝试一次完成求和积和分组(不创建额外的求和积列)

I am trying to do a sum product and a group by in one go (without creating an extra column of sum product)

这行代码我试过了

allHoldingsFund.groupby(['BrokerBestRate'])['notional_current']*['DistanceBestRate'].sum() 

如何进行求和,然后使用 group by 进行聚合?

how can I do a sum product and then aggregate it using group by?

期望的输出

BrokerBestRate      product of (notional_current  and DistanceBestRate)
   CITI              654654645665466
   JPM               453454534545367
  WFPBS              345345345345435

非常感谢

推荐答案

可以在groupby之前建product栏

You can build the product column before the groupby

df.assign(col=df.notional_current*df.DistanceBestRate).groupby('BrokerBestRate',as_index=False).col.sum()
Out[372]: 
  BrokerBestRate            col
0           CITI   32350.817245
1            JPM  -37152.380218
2          WFPBS -326860.001568

这篇关于对产品和分组求和的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)