cv2.approxPolyDP() , cv2.arcLength() 这些是如何工作的

cv2.approxPolyDP() , cv2.arcLength() How these works(cv2.approxPolyDP() , cv2.arcLength() 这些是如何工作的)
本文介绍了cv2.approxPolyDP() , cv2.arcLength() 这些是如何工作的的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

这些功能是如何工作的?我正在使用 Python3.7 和 OpenCv 4.2.0.提前致谢.

How do these function works? I am using Python3.7 and OpenCv 4.2.0. Thanks in Advance.

approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)

推荐答案

如果您正在寻找示例代码段,以下是一个:

If you are looking for a example snippet, below is one:

import cv2
import imutils

# edged is the edge detected image
cnts = cv2.findContours(edged, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
# loop over the contours
for c in cnts:
    # approximate the contour
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.02 * peri, True)
    # if our approximated contour has four points, then we
    # can assume that we have found our screen
    if len(approx) == 4:
        screenCnt = approx
        break

在上面的代码片段中,它首先从边缘检测图像中找到轮廓,然后对轮廓进行排序以找到五个最大的轮廓.最后,它遍历轮廓并使用 cv2.approxPolyDP 函数来平滑和逼近四边形.cv2.approxPolyDP 适用于文档边界等轮廓中有尖锐边缘的情况.

In the above snippet, first it finds the contours from a edge detected image, then it sorts the contours to find the five largest contours. Finally it loop over the contours and used cv2.approxPolyDP function to smooth and approximate the quadrilateral. cv2.approxPolyDP works for the cases where there are sharp edges in the contours like a document boundary.

这篇关于cv2.approxPolyDP() , cv2.arcLength() 这些是如何工作的的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)