如何修改整数中的位?

How to modify bits in an integer?(如何修改整数中的位?)
本文介绍了如何修改整数中的位?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个值为 7 (0b00000111) 的整数,我想用 13 (>0b00001101).替换整数中的位的最佳算法是什么?

I have an integer with a value 7 (0b00000111) And I would like to replace it with a function to 13 (0b00001101). What is the best algorithm to replace bits in an integer?

例如:

set_bits(somevalue, 3, 1) # What makes the 3rd bit to 1 in somevalue?

推荐答案

这些适用于任何大小的整数,甚至大于 32 位:

These work for integers of any size, even greater than 32 bit:

def set_bit(value, bit):
    return value | (1<<bit)

def clear_bit(value, bit):
    return value & ~(1<<bit)

如果你喜欢简短的东西,你可以使用:

If you like things short, you can just use:

>>> val = 0b111
>>> val |= (1<<3)
>>> '{:b}'.format(val)
'1111'
>>> val &=~ (1<<1)
'1101'

这篇关于如何修改整数中的位?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)