使用 django-rest-framework-simplejwt 注册后返回令牌

return token after registration with django-rest-framework-simplejwt(使用 django-rest-framework-simplejwt 注册后返回令牌)
本文介绍了使用 django-rest-framework-simplejwt 注册后返回令牌的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在使用 django-rest-framework-simplejwt,想知道注册用户后是否可以返回令牌?

I'm using django-rest-framework-simplejwt and was wondering if it's possible to return a token after registering a user?

这篇帖子有另一个jwt包的解决方案我想知道如何为 simplejwt 做类似的事情?

This post has a solution for another jwt package and I was wondering how I could do something similar for simplejwt?

谢谢

推荐答案

我刚刚解决了我自己的问题.如果您有任何意见,请告诉我.谢谢!

I just solved my own question. Let me know if you have any comments. Thanks!

class RegisterUserSerializer(serializers.ModelSerializer):
    """Serializer for creating user objects."""

    tokens = serializers.SerializerMethodField()

    class Meta:
        model = models.User
        fields = ('id', 'password', 'email', 'tokens')
        extra_kwargs = {'password': {'write_only': True}}

    def get_tokens(self, user):
        tokens = RefreshToken.for_user(user)
        refresh = text_type(tokens)
        access = text_type(tokens.access_token)
        data = {
            "refresh": refresh,
            "access": access
        }
        return data

    def create(self, validated_data):
        user = models.User(
            email=validated_data['email']
        )
        user.set_password(validated_data['password'])
        user.save()    
        return user

views.py

class UserListView(generics.ListCreateAPIView):
    """Handles creating and listing Users."""
    queryset = User.objects.all()

def create(self, request, *args, **kwargs):
        serializer = RegisterUserSerializer(data=request.data)
        if serializer.is_valid():
            self.perform_create(serializer)
            return Response(serializer.data, status=status.HTTP_201_CREATED)
        return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

这篇关于使用 django-rest-framework-simplejwt 注册后返回令牌的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)