从 Pandas 数据框中删除只有某些列具有相同值的重复行

Remove duplicate rows from Pandas dataframe where only some columns have the same value(从 Pandas 数据框中删除只有某些列具有相同值的重复行)
本文介绍了从 Pandas 数据框中删除只有某些列具有相同值的重复行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个熊猫数据框如下:

I have a pandas dataframe as follows:

A   B   C
1   2   x
1   2   y
3   4   z
3   5   x

我希望只剩下 1 行在特定列中共享相同值的行.在上面的示例中,我的意思是列 AB.换句话说,如果列 AB 的值在数据框中多次出现,则应该只保留一行(哪一行无关紧要).

I want that only 1 row remains of rows that share the same values in specific columns. In the example above I mean columns A and B. In other words, if the values of columns A and B occur more than once in the dataframe, only one row should remain (which one does not matter).

FWIW:所谓重复行的最大数量(即列AB相同)为2.

FWIW: the maximum number of so called duplicate rows (that is, where column A and B are the same) is 2.

结果应该是这样的:

A   B   C
1   2   x
3   4   z
3   5   x

A   B   C
1   2   y
3   4   z
3   5   x

推荐答案

使用 drop_duplicates 和参数 subset,为了只保留最后重复的行添加 keep='last':p>

Use drop_duplicates with parameter subset, for keeping only last duplicated rows add keep='last':

df1 = df.drop_duplicates(subset=['A','B'])
#same as
#df1 = df.drop_duplicates(subset=['A','B'], keep='first')
print (df1)
   A  B  C
0  1  2  x
2  3  4  z
3  3  5  x

<小时>

df2 = df.drop_duplicates(subset=['A','B'], keep='last')
print (df2)
   A  B  C
1  1  2  y
2  3  4  z
3  3  5  x

这篇关于从 Pandas 数据框中删除只有某些列具有相同值的重复行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)