问题描述
我正在寻找一种与 SQL 等效的方法
I'm looking for a way to do the equivalent to the SQL
SELECT DISTINCT col1, col2 FROM dataframe_table
pandas sql 比较没有关于 distinct 的任何内容.
The pandas sql comparison doesn't have anything about distinct.
.unique() 仅适用于单个列,所以我想我可以连接这些列,或者将它们放在列表/元组中并以这种方式进行比较,但这似乎是熊猫应该做的以更本土的方式进行.
.unique() only works for a single column, so I suppose I could concat the columns, or put them in a list/tuple and compare that way, but this seems like something pandas should do in a more native way.
我是否遗漏了一些明显的东西,或者没有办法做到这一点?
Am I missing something obvious, or is there no way to do this?
推荐答案
您可以使用drop_duplicates 方法来获取 DataFrame 中的唯一行:
You can use the drop_duplicates method to get the unique rows in a DataFrame:
In [29]: df = pd.DataFrame({'a':[1,2,1,2], 'b':[3,4,3,5]})
In [30]: df
Out[30]:
a b
0 1 3
1 2 4
2 1 3
3 2 5
In [32]: df.drop_duplicates()
Out[32]:
a b
0 1 3
1 2 4
3 2 5
如果您只想使用某些列来确定唯一性,您还可以提供 subset 关键字参数.请参阅文档字符串.
You can also provide the subset keyword argument if you only want to use certain columns to determine uniqueness. See the docstring.
这篇关于如何“选择不同的"?跨越 pandas 中的多个数据框列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!


大气响应式网络建站服务公司织梦模板
高端大气html5设计公司网站源码
织梦dede网页模板下载素材销售下载站平台(带会员中心带筛选)
财税代理公司注册代理记账网站织梦模板(带手机端)
成人高考自考在职研究生教育机构网站源码(带手机端)
高端HTML5响应式企业集团通用类网站织梦模板(自适应手机端)