在 Python 的列表中保留重复项

Keep duplicates in a list in Python(在 Python 的列表中保留重复项)
本文介绍了在 Python 的列表中保留重复项的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我知道这可能是一个简单的答案,但我想不通.Python中将重复项保存在列表中的最佳方法是什么:

I know this is probably an easy answer but I can't figure it out. What is the best way in Python to keep the duplicates in a list:

x = [1,2,2,2,3,4,5,6,6,7]

输出应该是:

[2,6]

我找到了这个链接:查找(并保留)子列表的重复项在 python 中,但我对 Python 还是比较陌生,我不能让它为一个简单的列表工作.

I found this link: Find (and keep) duplicates of sublist in python, but I'm still relatively new to Python and I can't get it to work for a simple list.

推荐答案

如果列表已经排序,这是一个简单的方法:

This is a short way to do it if the list is sorted already:

x = [1,2,2,2,3,4,5,6,6,7]

from itertools import groupby
print [key for key,group in groupby(x) if len(list(group)) > 1]

这篇关于在 Python 的列表中保留重复项的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)