遍历列表中的所有连续项对

Iterate over all pairs of consecutive items in a list(遍历列表中的所有连续项对)
本文介绍了遍历列表中的所有连续项对的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

给定一个列表

l = [1, 7, 3, 5]

我想遍历所有成对的连续列表项(1,7), (7,3), (3,5),即

I want to iterate over all pairs of consecutive list items (1,7), (7,3), (3,5), i.e.

for i in xrange(len(l) - 1):
    x = l[i]
    y = l[i + 1]
    # do something

我想以更紧凑的方式来做这件事,比如

I would like to do this in a more compact way, like

for x, y in someiterator(l): ...

有没有办法使用内置的 Python 迭代器来做到这一点?我确定 itertools 模块应该有解决方案,但我就是想不通.

Is there a way to do do this using builtin Python iterators? I'm sure the itertools module should have a solution, but I just can't figure it out.

推荐答案

只要使用 拉链

>>> l = [1, 7, 3, 5]
>>> for first, second in zip(l, l[1:]):
...     print first, second
...
1 7
7 3
3 5

如果您使用 Python 2(不建议),您可能会考虑使用 itertools 中的 izip 函数来处理您不想创建新列表的非常长的列表.

If you use Python 2 (not suggested) you might consider using the izip function in itertools for very long lists where you don't want to create a new list.

import itertools

for first, second in itertools.izip(l, l[1:]):
    ...

这篇关于遍历列表中的所有连续项对的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)