Pandas 的时间加权平均值

Time-weighted average with Pandas(Pandas 的时间加权平均值)
本文介绍了Pandas 的时间加权平均值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

在 Pandas 0.8 中计算 TimeSeries 时间加权平均值的最有效方法是什么?例如,假设我想要如下创建的 df.y - df.x 的时间加权平均值:

What's the most efficient way to calculate the time-weighted average of a TimeSeries in Pandas 0.8? For example, say I want the time-weighted average of df.y - df.x as created below:

import pandas
import numpy as np
times = np.datetime64('2012-05-31 14:00') + np.timedelta64(1, 'ms') * np.cumsum(10**3 * np.random.exponential(size=10**6))
x = np.random.normal(size=10**6)
y = np.random.normal(size=10**6)
df = pandas.DataFrame({'x': x, 'y': y}, index=times)

我觉得这个操作应该很容易做,但是我尝试过的每件事都涉及到几次混乱和缓慢的类型转换.

I feel like this operation should be very easy to do, but everything I've tried involves several messy and slow type conversions.

推荐答案

您可以将 df.index 转换为整数并使用它来计算平均值.有一个快捷方式 asi8 属性返回一个 int64 值数组:

You can convert df.index to integers and use that to compute the average. There is a shortcut asi8 property that returns an array of int64 values:

np.average(df.y - df.x, weights=df.index.asi8)

这篇关于Pandas 的时间加权平均值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)