从 Pandas 数据框列中删除“秒"和“分钟"

2023-01-23Python开发问题
129

本文介绍了从 pandas 数据框列中删除“秒"和“分钟"的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

给定一个如下的数据框:

Given a dataframe like:

import numpy as np
import pandas as pd

df = pd.DataFrame(
{'Date' : pd.date_range('1/1/2011', periods=5, freq='3675S'),
 'Num' : np.random.rand(5)})
                 Date       Num
0 2011-01-01 00:00:00  0.580997
1 2011-01-01 01:01:15  0.407332
2 2011-01-01 02:02:30  0.786035
3 2011-01-01 03:03:45  0.821792
4 2011-01-01 04:05:00  0.807869

我想删除分钟"和秒"信息.

I would like to remove the 'minutes' and 'seconds' information.

以下内容(大部分来自:如何删除pandas 数据帧索引的秒"?)工作正常,

The following (mostly stolen from: How to remove the 'seconds' of pandas dataframe index?) works okay,

df = df.assign(Date = lambda x: pd.to_datetime(x['Date'].dt.strftime('%Y-%m-%d %H')))
                 Date       Num
0 2011-01-01 00:00:00  0.580997
1 2011-01-01 01:00:00  0.407332
2 2011-01-01 02:00:00  0.786035
3 2011-01-01 03:00:00  0.821792
4 2011-01-01 04:00:00  0.807869

但是将日期时间转换为字符串然后再转换回日期时间感觉很奇怪.有没有办法更直接地做到这一点?

but it feels strange to convert a datetime to a string then back to a datetime. Is there a way to do this more directly?

推荐答案

dt.round

这应该是怎么做的...使用 dt.round

df.assign(Date=df.Date.dt.round('H'))

                 Date       Num
0 2011-01-01 00:00:00  0.577957
1 2011-01-01 01:00:00  0.995748
2 2011-01-01 02:00:00  0.864013
3 2011-01-01 03:00:00  0.468762
4 2011-01-01 04:00:00  0.866827

老答案

一种方法是设置索引并使用 resample

One approach is to set the index and use resample

df.set_index('Date').resample('H').last().reset_index()

                 Date       Num
0 2011-01-01 00:00:00  0.577957
1 2011-01-01 01:00:00  0.995748
2 2011-01-01 02:00:00  0.864013
3 2011-01-01 03:00:00  0.468762
4 2011-01-01 04:00:00  0.866827

另一种方法是去掉 datehour 组件

Another alternative is to strip the date and hour components

df.assign(
    Date=pd.to_datetime(df.Date.dt.date) +
         pd.to_timedelta(df.Date.dt.hour, unit='H'))

                 Date       Num
0 2011-01-01 00:00:00  0.577957
1 2011-01-01 01:00:00  0.995748
2 2011-01-01 02:00:00  0.864013
3 2011-01-01 03:00:00  0.468762
4 2011-01-01 04:00:00  0.866827

这篇关于从 Pandas 数据框列中删除“秒"和“分钟"的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

The End
pandas

相关推荐

在xarray中按单个维度的多个坐标分组
groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)...
2024-08-22 Python开发问题
15

Pandas中的GROUP BY AND SUM不丢失列
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)...
2024-08-22 Python开发问题
17

pandas 有从特定日期开始的按月分组的方式吗?
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)...
2024-08-22 Python开发问题
10

GROUP BY+新列+基于条件的前一行抓取值
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)...
2024-08-22 Python开发问题
18

PANDA中的Groupby算法和插值算法
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)...
2024-08-22 Python开发问题
11

PANAS-基于列对行进行分组,并将NaN替换为非空值
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)...
2024-08-22 Python开发问题
10