Pandas DataFrame 按时间戳分组

Pandas DataFrame grouping by Timestamp(Pandas DataFrame 按时间戳分组)
本文介绍了Pandas DataFrame 按时间戳分组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个用例:

数据的格式为:Col1、Col2、Col3 和时间戳.

Data is of the form: Col1, Col2, Col3 and Timestamp.

现在,我只想获取行数与时间戳箱数.

Now, I just want to get the counts of the rows vs Timestamp Bins.

即对于每半小时的存储桶(即使是没有相应行的存储桶),我需要计算有多少行.

i.e. for every half hour bucket (even the ones which have no correponding rows), I need the counts of how many rows are there.

时间戳分布在一年的时间里,所以我不能把它分成 24 个桶.

Timestamps are spread over a one year period, so I can't divide it into 24 buckets.

我必须每隔 30 分钟将它们装箱.

I have to bin them at 30 minutes interval.

推荐答案

groupby via pd.Grouper

# optionally, if needed
# df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')  
df.groupby(pd.Grouper(key='Timestamp', freq='30min')).count()

<小时>

重采样

df.set_index('Timestamp').resample('30min').count()

这篇关于Pandas DataFrame 按时间戳分组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)