如何在 virtualenv 中从 python scipt 运行 Tensorboard?

How to run Tensorboard from python scipt in virtualenv?(如何在 virtualenv 中从 python scipt 运行 Tensorboard?)
本文介绍了如何在 virtualenv 中从 python scipt 运行 Tensorboard?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

Tensorboard 应该像这样从命令行开始:

Tensorboard should be started from commnad line like that:

tensorboard --logdir=path

我需要从代码中运行它.直到现在我都用这个:

I need to run it from code. Until now I use this:

import os
os.system('tensorboard --logdir=' + path)

但是 tensorboard 没有启动,因为它没有包含在系统路径中.我在 Windows 上使用 PyCharm 和 virtualenv.我不想更改系统路径,所以唯一的选择是从 virtualenv 运行它.这个怎么做?

However tensorboard do not start because is not included in the system path. I use PyCharm with virtualenv on windows. I don't want to change system paths so the only option is to run it from virtualenv. How to do this?

推荐答案

使用 Tensorboard 2 API (2019):

Using Tensorboard 2 API (2019):

from tensorboard import program

tracking_address = log_path # the path of your log file.

if __name__ == "__main__":
    tb = program.TensorBoard()
    tb.configure(argv=[None, '--logdir', tracking_address])
    url = tb.launch()
    print(f"Tensorflow listening on {url}")

注意:tb.launch() 创建一个守护线程,当你的进程完成时会自动终止

Note: tb.launch() create a daemon thread that will die automatically when your process is finished

这篇关于如何在 virtualenv 中从 python scipt 运行 Tensorboard?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)