将 conda environment.yml 与 pip requirements.txt 相结合

Combining conda environment.yml with pip requirements.txt(将 conda environment.yml 与 pip requirements.txt 相结合)
本文介绍了将 conda environment.yml 与 pip requirements.txt 相结合的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我使用 conda 环境,也需要一些 pip 包,例如来自 ~gohlke 的预编译轮子.

I work with conda environments and need some pip packages as well, e.g. pre-compiled wheels from ~gohlke.

目前我有两个文件: environment.yml for conda with:

At the moment I have two files: environment.yml for conda with:

# run: conda env create --file environment.yml
name: test-env
dependencies:
- python>=3.5
- anaconda

requirements.txt为pip,激活上述conda环境后即可使用:

and requirements.txt for pip which can be used after activating above conda environment:

# run: pip install -i requirements.txt
docx
gooey
http://www.lfd.uci.edu/~gohlke/pythonlibs/bofhrmxk/opencv_python-3.1.0-cp35-none-win_amd64.whl

是否有可能将它们合并到一个文件中(对于 conda)?

Is there a possibility to combine them in one file (for conda)?

推荐答案

Pip 依赖可以像这样包含在 environment.yml 文件中(docs):

Pip dependencies can be included in the environment.yml file like this (docs):

# run: conda env create --file environment.yml
name: test-env
dependencies:
- python>=3.5
- anaconda
- pip
- numpy=1.13.3  # pin version for conda
- pip:
  # works for regular pip packages
  - docx
  - gooey
  - matplotlib==2.0.0  # pin version for pip
  # and for wheels
  - http://www.lfd.uci.edu/~gohlke/pythonlibs/bofhrmxk/opencv_python-3.1.0-cp35-none-win_amd64.whl

它也适用于同一目录中的 .whl 文件(请参阅 Dengar 的答案)以及常见的 pip 包.

It also works for .whl files in the same directory (see Dengar's answer) as well as with common pip packages.

这篇关于将 conda environment.yml 与 pip requirements.txt 相结合的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)