为什么 Conda 激活环境后无法调用正确的 Python 版本?

Why Conda cannot call correct Python version after activating the environment?(为什么 Conda 激活环境后无法调用正确的 Python 版本?)
本文介绍了为什么 Conda 激活环境后无法调用正确的 Python 版本?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我在Linux下有如下conda环境:

I have the following conda environment under Linux:

$ conda info -e
# conda environments:
#
py33                     /u21/coyotito/.anaconda/envs/py33
root                  *  /u21/coyotito/.anaconda

py33 是用这个命令创建的:

And py33 is created with this command:

$ conda create -n py33 python=3.3 anaconda

问题是当我激活 py33 时它仍然无法调用 Python 3.3 版本.

The problem is when I activate py33 it still cannot call Python version 3.3.

[coyotito@pearl ~]$ source activate py33
(coyotito)[coyotito@pearl ~]$ python --version
Python 2.7.10 :: Anaconda 2.1.0 (64-bit)
(coyotito)[coyotito@pearl ~]$ conda info -e
# conda environments:
#
py33                     /u21/coyotito/.anaconda/envs/py33
root                  *  /u21/coyotito/.anaconda

即它仍然调用旧的python.还要注意括号下的提示不是 (py33).

Namely it still calling old python. Notice also that the prompt under bracket is not (py33).

(coyotito)[coyotito@pearl ~]$ which python
~/.anaconda/bin/python

在新环境中代替python:

Instead of python in new environment:

~/.anaconda/envs/py33/bin/python3.3

我该如何解决这个问题?

How can I resolve this issue?

更新

我在 ~/.bash_profile 中的 PATH 环境如下所示:

My PATH environment in ~/.bash_profile looks like this:

export PATH=$HOME/.anaconda/bin:$PATH

推荐答案

我遇到了完全相同的问题.不知道我做了什么来陷入这种混乱,但我用一个简单的方法解决了它:

I had the exact same problem. Not sure what I did to get into that mess, but I solved it with a simple:

conda deactivate
conda activate foo_env

(如果激活了多个环境,可能需要多次运行conda deactivate.)

(If you have activated multiple environments, you may need to run conda deactivate multiple times.)

这篇关于为什么 Conda 激活环境后无法调用正确的 Python 版本?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)