如何使用 Visual Profiler 分析 PyCuda 代码?

How to profile PyCuda code with the Visual Profiler?(如何使用 Visual Profiler 分析 PyCuda 代码?)
本文介绍了如何使用 Visual Profiler 分析 PyCuda 代码?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

当我创建一个新会话并告诉 Visual Profiler 启动我的 python/pycuda 脚本时,我收到以下错误消息:Execution run #1 of program '' failed, exit code: 255

When I create a new session and tell the Visual Profiler to launch my python/pycuda scripts I get following error message: Execution run #1 of program '' failed, exit code: 255

这些是我的偏好:

  • 启动:python "/pathtopycudafile/mysuperkernel.py"
  • 工作目录:"/pathtopycudafile/mysuperkernel.py"
  • 参数:[empty]

我在 Ubuntu 10.10 下使用 CUDA 4.0.64位.分析编译的示例工作.

I use CUDA 4.0 under Ubuntu 10.10. 64Bit. Profiling compiled examples works.

附言我知道 SO 问题 如何在 Linux 中分析 PyCuda 代码?,但似乎是一个不相关的问题.

p.s. I am aware of SO question How to profile PyCuda code in Linux?, but seems to be an unrelated problem.

小例子

pycudaexample.py:

pycudaexample.py:

import pycuda.autoinit
import pycuda.driver as drv
import numpy

from pycuda.compiler import SourceModule

mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1), grid=(1,1))

pycuda.autoinit.context.detach()

示例设置

错误信息

推荐答案

您为计算分析器指定可执行文件的方式有问题.如果我在您发布的代码的顶部放了一条井号线:

There is something wrong with the way you are specifying the executable to the compute profiler. If I put a hash bang line at the top of your posted code:

#!/usr/bin/env python

然后给python文件可执行权限,计算分析器运行代码没有抱怨,我得到这个:

and then give the python file executable permissions, the compute profiler runs the code without complaint and I get this:

这篇关于如何使用 Visual Profiler 分析 PyCuda 代码?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)