如何在 Python 中将货币字符串转换为浮点数?

How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
本文介绍了如何在 Python 中将货币字符串转换为浮点数?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一些字符串表示特定货币格式的数字,例如:

I have some strings representing numbers with specific currency format, for example:

money="$6,150,593.22"

我想把这个字符串转换成数字

I want to convert this string into the number

6150593.22

实现这一目标的最佳方法是什么?

What is the best way to achieve this?

推荐答案

试试这个:

from re import sub
from decimal import Decimal

money = '$6,150,593.22'
value = Decimal(sub(r'[^d.]', '', money))

这有一些优点,因为它使用 Decimal 而不是 float(更适合表示货币)并且它还通过不对特定货币符号进行硬编码来避免任何语言环境问题.

This has some advantages since it uses Decimal instead of float (which is better for representing currency) and it also avoids any locale issues by not hard-coding a specific currency symbol.

这篇关于如何在 Python 中将货币字符串转换为浮点数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)