导出 pandas DataFrame 时如何删除列名行?

How do you remove the column name row when exporting a pandas DataFrame?(导出 pandas DataFrame 时如何删除列名行?)
本文介绍了导出 pandas DataFrame 时如何删除列名行?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

假设我将以下 Excel 电子表格导入数据框:

Say I import the following Excel spreadsheet into a dataframe:

Val1 Val2 Val3
1     2    3 
5     6    7 
9     1    2

如何删除列名行(在本例中为 Val1、Val2、Val3)以便导出没有列名的 csv,仅导出数据?

How do I delete the column name row (in this case Val1, Val2, Val3) so that I can export a csv with no column names, just the data?

我试过 df.drop()df.ix[1:] 都没有成功.

I have tried df.drop() and df.ix[1:] and have not been successful with either.

推荐答案

您可以使用 header=False 写入不带标头的 csv 和使用 index=False 不带索引的 csv>.如果需要,您还可以使用 sep 修改分隔符.

You can write to csv without the header using header=False and without the index using index=False. If desired, you also can modify the separator using sep.

没有标题行的CSV示例,省略了标题行:

CSV example with no header row, omitting the header row:

df.to_csv('filename.csv', header=False)

TSV(制表符分隔)示例,省略索引列:

TSV (tab-separated) example, omitting the index column:

df.to_csv('filename.tsv', sep='	', index=False)

这篇关于导出 pandas DataFrame 时如何删除列名行?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)