Pandas DataFrame - '不能在使用 ols/线性回归时从 [datetime64[ns]] 到

Pandas DataFrame - #39;cannot astype a datetimelike from [datetime64[ns]] to [float64]#39; when using ols/linear regression(Pandas DataFrame - 不能在使用 ols/线性回归时从 [datetime64[ns]] 到 [float64] 键入 datetimelike) - IT屋-程序员软件开
本文介绍了Pandas DataFrame - '不能在使用 ols/线性回归时从 [datetime64[ns]] 到 [float64] 键入 datetimelike的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个如下的DataFrame:

I have a DataFrame as follows:

   Ticker        Date  Close
0    ADBE  2016-02-16  78.88
1    ADBE  2016-02-17  81.85
2    ADBE  2016-02-18  80.53
3    ADBE  2016-02-19  80.87
4    ADBE  2016-02-22  83.80
5    ADBE  2016-02-23  83.07

...等等.Date 列是问题所在.我正在尝试使用 Close 列获得 Date 列的线性回归:

...and so on. The Date column is the issue. I'm trying to get the linear regression of the Date column with the Close column:

ols1 = pd.ols(y=ADBE['Close'], x=ADBE['Date'], intercept=True)

我收到以下错误:

TypeError: cannot astype a datetimelike from [datetime64[ns]] to [float64]

我尝试了多种方法来消除此错误,例如:

I've tried multiple ways of getting rid of this error, for examples:

dates_input = ADBE['Date'].values.astype('datetime64[D]')

dates_input = ADBE['Date'].values.astype('float')

第二次 dates_input 尝试将类型返回为 pandas.core.series.Series 但我仍然收到错误消息.

The second dates_input attempt returns the type as pandas.core.series.Series but I still get an error message.

有谁知道如何让 Date 列正常工作并摆脱这个 TypeError?

Does anyone know how to get the Date column to work and get rid of this TypeError?

推荐答案

你需要:

ADBE['Date'] = ADBE['Date'].values.astype(float)

然后:

ols1 = pd.ols(y=ADBE['Close'], x=ADBE['Date'], intercept=True)

这篇关于Pandas DataFrame - '不能在使用 ols/线性回归时从 [datetime64[ns]] 到 [float64] 键入 datetimelike的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)