问题描述
我有 2 个具有相同列但不同日期时间索引的数据框.我想重新采样其中一个以使用另一个的索引,并在另一个索引中没有数据的任何日期从一个转发填充数据.
I have 2 data frames with identical columns but different datetime indices. I want to resample one of them to use the index of the other and forward fill data from the one on any dates in the index of the other in which there wasn't data for.
import pandas as pd
import numpy as np
from datetime import datetime as dt
a_values = np.random.randn(4, 4)
a_index = [dt(2012, 3, 16), dt(2012, 3, 19), dt(2012, 3, 20), dt(2012, 3, 21)]
a = pd.DataFrame(data=a_values, index=a_index)
b_values = np.trunc(np.random.randn(3, 4) * 1000)
b_index = [dt(2012, 3, 16), dt(2012, 3, 19), dt(2012, 3, 21)]
b = pd.DataFrame(data=b_values, index=b_index)
c_insert = a.ix['2012-03-20']
c = b.append(c_insert).sort()
c.ix['2012-03-20'] = c.ix['2012-03-19']
'a' 表示我想将其索引用作重采样参考的数据框.'b' 代表我想要重新采样和转发填充数据的数据框.'c' 代表我想要的结果.
'a' represents the data frame whose index I'd like to use as the resampling reference. 'b' represents the data frame I'd like to resample and forward fill data. 'c' represents what I'd like the results to look like.
请注意,b"缺少a"中存在的2012-03-20"索引.c"使用索引2012-03-19"的b"列中的数据填充索引2012-03-20"的列
Notice that 'b' is missing the '2012-03-20' index that exists in 'a'. 'c' populates the columns for index '2012-03-20' with the data in the columns from 'b' for index '2012-03-19'
pandas 是否具有执行此操作的功能.
Does pandas have the functionality to do this.
提前致谢.
皮尔
推荐答案
要通过引用索引重新采样,请使用 reindex.
To resample by a reference index, use reindex.
In [11]: b.reindex(a.index, method='ffill')
Out[11]:
0 1 2 3
2012-03-16 -926 -625 736 457
2012-03-19 -1024 742 732 -1020
2012-03-20 -1024 742 732 -1020
2012-03-21 1090 -1163 1652 -94
这篇关于使用另一个时间序列的索引重新采样一个时间序列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!


大气响应式网络建站服务公司织梦模板
高端大气html5设计公司网站源码
织梦dede网页模板下载素材销售下载站平台(带会员中心带筛选)
财税代理公司注册代理记账网站织梦模板(带手机端)
成人高考自考在职研究生教育机构网站源码(带手机端)
高端HTML5响应式企业集团通用类网站织梦模板(自适应手机端)