与多处理错误的另一个混淆,“模块"对象没有属性“f"

yet another confusion with multiprocessing error, #39;module#39; object has no attribute #39;f#39;(与多处理错误的另一个混淆,“模块对象没有属性“f)
本文介绍了与多处理错误的另一个混淆,“模块"对象没有属性“f"的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我知道这个问题之前已经回答过了,但似乎直接执行脚本python filename.py"是行不通的.我在 SuSE Linux 上安装了 Python 2.6.2.

I know this has been answered before, but it seems that executing the script directly "python filename.py" does not work. I have Python 2.6.2 on SuSE Linux.

代码:

#!/usr/bin/python
# -*- coding: utf-8 -*-
from multiprocessing import Pool
p = Pool(1)
def f(x):
    return x*x
p.map(f, [1, 2, 3])

命令行:

> python example.py
Process PoolWorker-1:
Traceback (most recent call last):
File "/usr/lib/python2.6/multiprocessing/process.py", line 231, in _bootstrap
    self.run()
File "/usr/lib/python2.6/multiprocessing/process.py", line 88, in run
    self._target(*self._args, **self._kwargs)
File "/usr/lib/python2.6/multiprocessing/pool.py", line 57, in worker
    task = get()
File "/usr/lib/python2.6/multiprocessing/queues.py", line 339, in get
    return recv()
AttributeError: 'module' object has no attribute 'f'

推荐答案

重构代码,以便在创建 Pool 实例之前定义 f() 函数.否则worker看不到你的函数.

Restructure your code so that the f() function is defined before you create instance of Pool. Otherwise the worker cannot see your function.

#!/usr/bin/python
# -*- coding: utf-8 -*-

from multiprocessing import Pool

def f(x):
    return x*x

p = Pool(1)
p.map(f, [1, 2, 3])

这篇关于与多处理错误的另一个混淆,“模块"对象没有属性“f"的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)