如何将队列引用传递给 pool.map_async() 管理的函数?

How do you pass a Queue reference to a function managed by pool.map_async()?(如何将队列引用传递给 pool.map_async() 管理的函数?)
本文介绍了如何将队列引用传递给 pool.map_async() 管理的函数?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想要一个长时间运行的进程通过队列(或类似的东西)返回它的进度,我将把它提供给进度条对话框.当过程完成时,我还需要结果.此处的测试示例失败并出现 RuntimeError: Queue objects should only be shared between processes through inheritance.

I want a long-running process to return its progress over a Queue (or something similar) which I will feed to a progress bar dialog. I also need the result when the process is completed. A test example here fails with a RuntimeError: Queue objects should only be shared between processes through inheritance.

import multiprocessing, time

def task(args):
    count = args[0]
    queue = args[1]
    for i in xrange(count):
        queue.put("%d mississippi" % i)
    return "Done"

def main():
    q = multiprocessing.Queue()
    pool = multiprocessing.Pool()
    result = pool.map_async(task, [(x, q) for x in range(10)])
    time.sleep(1)
    while not q.empty():
        print q.get()
    print result.get()

if __name__ == "__main__":
    main()

我已经能够使用单独的 Process 对象(我 am 允许传递 Queue 引用)使其工作,但是我没有一个池来管理我的许多进程想启动.有什么更好的模式建议吗?

I've been able to get this to work using individual Process objects (where I am alowed to pass a Queue reference) but then I don't have a pool to manage the many processes I want to launch. Any advise on a better pattern for this?

推荐答案

以下代码似乎可以工作:

The following code seems to work:

import multiprocessing, time

def task(args):
    count = args[0]
    queue = args[1]
    for i in xrange(count):
        queue.put("%d mississippi" % i)
    return "Done"


def main():
    manager = multiprocessing.Manager()
    q = manager.Queue()
    pool = multiprocessing.Pool()
    result = pool.map_async(task, [(x, q) for x in range(10)])
    time.sleep(1)
    while not q.empty():
        print q.get()
    print result.get()

if __name__ == "__main__":
    main()

请注意,队列来自 manager.Queue() 而不是 multiprocessing.Queue().感谢 Alex 为我指明了这个方向.

Note that the Queue is got from a manager.Queue() rather than multiprocessing.Queue(). Thanks Alex for pointing me in this direction.

这篇关于如何将队列引用传递给 pool.map_async() 管理的函数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)