读取多个 csv 文件并将文件名添加为 pandas 中的新列

Read multiple csv files and Add filename as new column in pandas(读取多个 csv 文件并将文件名添加为 pandas 中的新列)
本文介绍了读取多个 csv 文件并将文件名添加为 pandas 中的新列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我在一个文件夹中有多个 csv 文件,我想在一个数据框中将它们全部打开并插入一个具有相关文件名的新列.到目前为止,我已经编写了以下代码:

I have several csv files in a single folder and I want to open them all in one dataframe and insert a new column with the associated filename. So far I've coded the following:

import pandas as pd
import glob, os
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('path/*.csv'))))
df['filename']= os.path.basename(csv)
df

这给了我想要的数据框,但在新列文件名"中,它只列出了文件夹中每一行的最后一个文件名.我正在寻找每一行都填充它的关联 csv 文件.不仅仅是文件夹中的最后一个文件.

This gives me the dataframe I want but in the new column 'filename' it's only listing the last filename in the folder for every row. I'm looking for each row to be populated with it's associated csv file. Not just the last file in the folder.

非常感谢对这个新手的任何帮助.

Any assistance for this newbie is much appreciated.

推荐答案

我觉得你需要assign 用于在 loop 中添加新列,参数 ignore_index=True 也被添加到 concat 用于删除重复项索引:

I think you need assign for add new column in loop, also parameter ignore_index=True was added to concat for remove duplicates in index:

测试文件是 a.csv, b.csv, c.csv.

Files for test are a.csv, b.csv, c.csv.

import pandas as pd
import glob, os


files = glob.glob('samples_for_so/*.csv')
print (files)
#['samples_for_so\a.csv', 'samples_for_so\b.csv', 'samples_for_so\c.csv']


df = pd.concat([pd.read_csv(fp).assign(New=os.path.basename(fp)) for fp in files])
print (df)
   a  b  c  d    New
0  0  1  2  5  a.csv
1  1  5  8  3  a.csv
0  0  9  6  5  b.csv
1  1  6  4  2  b.csv
0  0  7  1  7  c.csv
1  1  3  2  6  c.csv


files = glob.glob('samples_for_so/*.csv')
df = pd.concat([pd.read_csv(fp).assign(New=os.path.basename(fp).split('.')[0]) 
       for fp in files])
print (df)
   a  b  c  d New
0  0  1  2  5   a
1  1  5  8  3   a
2  0  9  6  5   b
3  1  6  4  2   b
4  0  7  1  7   c
5  1  3  2  6   c

这篇关于读取多个 csv 文件并将文件名添加为 pandas 中的新列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)