将表示列表的字符串转换为实际的列表对象

Converting a string that represents a list, into an actual list object(将表示列表的字符串转换为实际的列表对象)
本文介绍了将表示列表的字符串转换为实际的列表对象的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个代表列表的字符串:

I have a string that represents a list:

"[22, 33, 36, 41, 46, 49, 56, 72, 85, 92, 95, 98, 107, 118, 120, 123, 124, 126, 127, 130, 149, 157, 161, 171, 174, 177, 187, 195, 225, 302, 316, 359, 360, 363, 396, 479, 486, 491]"

我想把这个字串变成一个实际的列表.我想可以正则表达式输出数字然后循环(append())但是有没有更简单的方法?不知道如何将其设置为正则表达式.

I would like to turn that litteral string into an actual list. I suppose to could regex out the numbers and loop over then (append()) but is there an easier way? Not sure how I would set that up as a regex.

推荐答案

使用 ast.literal_eval.

>>> import ast
>>> i = ast.literal_eval('[22, 33, 36, 41, 46, 49, 56]')
>>> i[3]
41

这篇关于将表示列表的字符串转换为实际的列表对象的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)