如何将嵌套列表列表转换为 python 3.3 中的元组列表?

How to convert nested list of lists into a list of tuples in python 3.3?(如何将嵌套列表列表转换为 python 3.3 中的元组列表?)
本文介绍了如何将嵌套列表列表转换为 python 3.3 中的元组列表?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试将嵌套的列表列表转换为 Python 3.3 中的元组列表.但是,似乎我没有这样做的逻辑.

I am trying to convert a nested list of lists into a list of tuples in Python 3.3. However, it seems that I don't have the logic to do that.

输入如下:

>>> nested_lst = [['tom', 'cat'], ['jerry', 'mouse'], ['spark', 'dog']]

所需的输出应如下所示:

And the desired ouptput should look as exactly as follows:

nested_lst_of_tuples = [('tom', 'cat'), ('jerry', 'mouse'), ('spark', 'dog')]

推荐答案

只需使用列表推导:

nested_lst_of_tuples = [tuple(l) for l in nested_lst]

演示:

>>> nested_lst = [['tom', 'cat'], ['jerry', 'mouse'], ['spark', 'dog']]
>>> [tuple(l) for l in nested_lst]
[('tom', 'cat'), ('jerry', 'mouse'), ('spark', 'dog')]

这篇关于如何将嵌套列表列表转换为 python 3.3 中的元组列表?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)