使用 Pandas 将整个数据帧从小写转换为大写

Convert whole dataframe from lower case to upper case with Pandas(使用 Pandas 将整个数据帧从小写转换为大写)
本文介绍了使用 Pandas 将整个数据帧从小写转换为大写的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个如下所示的数据框:

I have a dataframe like the one displayed below:

# Create an example dataframe about a fictional army
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks'],
            'company': ['1st', '1st', '2nd', '2nd'],
            'deaths': ['kkk', 52, '25', 616],
            'battles': [5, '42', 2, 2],
            'size': ['l', 'll', 'l', 'm']}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'deaths', 'battles', 'size'])

我的目标是将数据框中的每个字符串都转换为大写,使其看起来像这样:

My goal is to transform every single string inside of the dataframe to upper case so that it looks like this:

注意:所有数据类型均为对象,不得更改;输出必须包含所有对象.我想避免将每一列一一转换...我想一般在整个数据帧上进行.

Notice: all data types are objects and must not be changed; the output must contain all objects. I want to avoid to convert every single column one by one... I would like to do it generally over the whole dataframe possibly.

到目前为止我尝试的是这样做但没有成功

What I tried so far is to do this but without success

df.str.upper()

推荐答案

astype() 会将每个系列转换为 dtype 对象(字符串),然后调用 str() 方法在转换后的系列上从字面上获取字符串并调用函数 upper() 就可以了.请注意,在此之后,所有列的 dtype 都会更改为 object.

astype() will cast each series to the dtype object (string) and then call the str() method on the converted series to get the string literally and call the function upper() on it. Note that after this, the dtype of all columns changes to object.

In [17]: df
Out[17]: 
     regiment company deaths battles size
0  Nighthawks     1st    kkk       5    l
1  Nighthawks     1st     52      42   ll
2  Nighthawks     2nd     25       2    l
3  Nighthawks     2nd    616       2    m

In [18]: df.apply(lambda x: x.astype(str).str.upper())
Out[18]: 
     regiment company deaths battles size
0  NIGHTHAWKS     1ST    KKK       5    L
1  NIGHTHAWKS     1ST     52      42   LL
2  NIGHTHAWKS     2ND     25       2    L
3  NIGHTHAWKS     2ND    616       2    M

您可以稍后使用 to_numeric():

In [42]: df2 = df.apply(lambda x: x.astype(str).str.upper())

In [43]: df2['battles'] = pd.to_numeric(df2['battles'])

In [44]: df2
Out[44]: 
     regiment company deaths  battles size
0  NIGHTHAWKS     1ST    KKK        5    L
1  NIGHTHAWKS     1ST     52       42   LL
2  NIGHTHAWKS     2ND     25        2    L
3  NIGHTHAWKS     2ND    616        2    M

In [45]: df2.dtypes
Out[45]: 
regiment    object
company     object
deaths      object
battles      int64
size        object
dtype: object

这篇关于使用 Pandas 将整个数据帧从小写转换为大写的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)