问题描述
我了解了 Python 多进程的 Pipes/Queues/Shared ctypes Objects/Managers,我想将它们与 Linux 的匿名管道、命名管道、共享内存、套接字等进行比较.我现在有以下问题
I've learned about Python multiprocess's Pipes/Queues/Shared ctypes Objects/Managers, and I want to compare them with Linux's anonymous pipes, named pipes, shared memory, socket, and so on. I now have the following questions
Python 多处理的管道和队列模块是基于匿名管道的.是否提供命名管道?
The pipes and queue modules of Python's multiprocessing are based on anonymous pipes. Does it provide named pipes?
Python multiprocessing.sharedctypes 是否支持独立进程沟通?我认为它只支持父子进程或兄弟进程通信.
Does Python multiprocessing.sharedctypes support independent process communication? I think it only supports father and child process or brotherly process communication.
其中哪些仅用于亲子鉴定过程中或兄弟情谊,可以在独立进程之间进行通信还是不同的主机?
Which of them are only used in the process of paternity or brotherhood, which can be communicated between independent processes or different hosts?
它们各自的特点是什么,应该如何选择?
What are their respective characteristics, how should I choose them?
提前致谢.
推荐答案
您的问题相当广泛,大部分答案都可以在 multiprocessing 模块文档中找到.
Your question is quite broad and most of the answers can be found in the multiprocessing module documentation.
下面是一个简短的回答.
Here follows a somewhat short answer.
- 多处理侦听器和客户端 允许选择命名管道作为传输介质.
来自 文档:
- The multiprocessing Listeners and Clients allow to choose named pipes as transport medium.
From the documentation:
multiprocessing.sharedctypes 模块提供了从共享内存中分配 ctypes 对象的函数,这些对象可以被子进程继承.
The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared memory which can be inherited by child processes.
您不能跨没有父/子关系的进程使用 multiprocessing.sharedctypes 功能.
You cannot use multiprocessing.sharedctypes functionalities across processes which don't have parent/child relationship.
Python multiprocessing 模块最初是通过 threading API 实现的.到那时,它支持的功能有所增长,但核心思想保持不变.multiprocessing 模块旨在处理 Python 进程系列.对于任何其他用途,subprocess 模块是更好的选择.
Python multiprocessing module was initially implemented over the threading APIs. By the time, it grew in features it supports but the core idea remains the same. The multiprocessing module is intended to deal with Python process families. For any other use, the subprocess module is a better option.
对于跨多个主机分配任务和作业,有更好的解决方案来抽象低级基础架构.您可以查看 Python 项目,例如 Celery 或 Luigi 或更复杂的基础架构,例如 Apache Mesos.
For distribution of tasks and jobs across multiple hosts, there are far better solutions abstracting the low level infrastructure. You can take a look at Python projects such as Celery or Luigi or more complex infrastructures such as Apache Mesos.
这篇关于Python的Multiprocessing之进程通信的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!


大气响应式网络建站服务公司织梦模板
高端大气html5设计公司网站源码
织梦dede网页模板下载素材销售下载站平台(带会员中心带筛选)
财税代理公司注册代理记账网站织梦模板(带手机端)
成人高考自考在职研究生教育机构网站源码(带手机端)
高端HTML5响应式企业集团通用类网站织梦模板(自适应手机端)