可以集成 Google AppEngine 和 Google Code 以进行持续集成吗?

Possible to integrate Google AppEngine and Google Code for continuous integration?(可以集成 Google AppEngine 和 Google Code 以进行持续集成吗?)
本文介绍了可以集成 Google AppEngine 和 Google Code 以进行持续集成吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

任何人对如何/是否可以集成 Google 代码提交以导致 Google AppEngine 部署最新代码有任何想法?

Anyone have any thoughts on how/if it is possible to integrate Google Code commits to cause a Google AppEngine deployment of the most recent code?

我有一个简单的 Google AppEngine 项目的源代码托管在 Google 代码上,如果我每次提交 Subversion 时,AppEngine 都会反映最新的提交,我会很高兴.我不介意现场网站是否出现问题,因为该项目主要供个人使用和学习.

I have a simple Google AppEngine project's source hosted on Google Code and would love if everytime I committed to Subversion, that AppEngine would reflect the latest commit. I don't mind if things are broken on the live site since the project is for personal use mainly and for learning.

有人对如何绑定代码存储库的颠覆提交和/或如何启动到 AppEngine 的部署有任何想法吗?理想情况下,该解决方案不需要我的任何手动操作,也不需要我机器上的任何类型的服务器/侦听器软件.

Anyone have any thoughts on how to tie into the subversion commit for the Code repository and/or how to kickoff the deployment to AppEngine? Ideally the solution would not require anything manual from me nor any type of server/listener software on my machine.

推荐答案

Google 代码项目托管现在支持 Post-Commit Web Hooks,在每次提交后 ping 一个项目所有者指定的 URL.这样就无需定期轮询您的 Google 代码存储库.

Google Code Project Hosting now supports Post-Commit Web Hooks, which ping a project-owner-specified URL after every commit. This would eliminate the need to regularly poll your Google Code repository.

这篇关于可以集成 Google AppEngine 和 Google Code 以进行持续集成吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)