将 x 轴刻度更改为自定义字符串

Change x-axis ticks to custom strings(将 x 轴刻度更改为自定义字符串)
本文介绍了将 x 轴刻度更改为自定义字符串的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想将 x 轴刻度标签更改为自定义字符串,但以下不起作用.如何将刻度标签设置为 [one"、two"、three"]?

I want to change the x-axis ticklabels to custom strings, but the following does not work. How can I set the ticklabels to ["one", "two", "three"]?

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
import matplotlib.pyplot as plt

def pushButtonClicked(self):
        code = self.lineEdit.text()
       
       
        x=["one","two","three"]
        l=[1,2,3]
        y=[2,3,4]
        ax = self.fig.add_subplot(111)
       
        print(1)
        
        ax.plot(l, y, label='DeadPopulation')
        ax.xticks(l,x)
        print(IntroUI.g_sortArrayDeadcnt)
      
        ax.legend(loc='upper right') 
        ax.grid() 
        self.canvas.draw()

推荐答案

我假设您只想将刻度设置为等于 ['one', 'two', 'three']?

I assume you just want to set the ticks to be equal to ['one', 'two', 'three']?

为此,您需要使用 set_xticks()set_xticklabels():

To do this, you need to use set_xticks() and set_xticklabels():

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
import matplotlib.pyplot as plt

def pushButtonClicked(self):
        code = self.lineEdit.text()


        x=["one","two","three"]
        l=[1,2,3]
        y=[2,3,4]
        ax = self.fig.add_subplot(111)

        print(1)

        ax.plot(l, y, label='DeadPopulation')

        # Set the tick positions
        ax.set_xticks(l)
        # Set the tick labels
        ax.set_xticklabels(x)

        print(IntroUI.g_sortArrayDeadcnt)

        ax.legend(loc='upper right') 
        ax.grid() 
        self.canvas.draw()

小例子

import matplotlib.pyplot as plt
f, ax = plt.subplots()

x = ['one', 'two', 'three']
l = [1, 2, 3]
y = [2, 3, 4]

ax.plot(l,y)
ax.set_xticks(l)
ax.set_xticklabels(x)

plt.show()

下面是它的样子:

这篇关于将 x 轴刻度更改为自定义字符串的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)