如何将调试器附加到 python 子进程?

How to attach debugger to a python subproccess?(如何将调试器附加到 python 子进程?)
本文介绍了如何将调试器附加到 python 子进程?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我需要调试由 multiprocessing.Process() 生成的子进程.pdb 调试器似乎不知道分叉并且无法附加到已经运行的进程.

I need to debug a child process spawned by multiprocessing.Process(). The pdb degugger seems to be unaware of forking and unable to attach to already running processes.

是否有任何更智能的 python 调试器可以附加到子进程?

Are there any smarter python debuggers which can be attached to a subprocess?

推荐答案

Winpdb 差不多就是这个定义更智能的 Python 调试器.它明确支持下叉,不确定它是否能很好地与配合使用multiprocessing.Process() 但值得一试.

Winpdb is pretty much the definition of a smarter Python debugger. It explicitly supports going down a fork, not sure it works nicely with multiprocessing.Process() but it's worth a try.

有关检查是否支持您的用例的候选列表,请参阅 Python 调试器列表 在 wiki 中.

For a list of candidates to check for support of your use case, see the list of Python Debuggers in the wiki.

这篇关于如何将调试器附加到 python 子进程?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)