multiprocessing.Pool 示例

multiprocessing.Pool example(multiprocessing.Pool 示例)
本文介绍了multiprocessing.Pool 示例的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试学习如何使用 multiprocessing,结果发现 下面的例子.

I'm trying to learn how to use multiprocessing, and found the following example.

我想对值求和如下:

from multiprocessing import Pool
from time import time

N = 10
K = 50
w = 0

def CostlyFunction(z):
    r = 0
    for k in xrange(1, K+2):
        r += z ** (1 / k**1.5)
    print r
    w += r
    return r

currtime = time()

po = Pool()

for i in xrange(N):
    po.apply_async(CostlyFunction,(i,))
po.close()
po.join()

print w
print '2: parallel: time elapsed:', time() - currtime

我无法得到所有 r 值的总和.

I can't get the sum of all r values.

推荐答案

如果你要像这样使用 apply_async,那么你必须使用某种共享内存.此外,您需要放置启动多处理的部分,以便它仅在由初始脚本调用时完成,而不是池进程.这是使用地图的一种方法.

If you're going to use apply_async like that, then you have to use some sort of shared memory. Also, you need to put the part that starts the multiprocessing so that it is only done when called by the initial script, not the pooled processes. Here's a way to do it with map.

from multiprocessing import Pool
from time import time

K = 50
def CostlyFunction((z,)):
    r = 0
    for k in xrange(1, K+2):
        r += z ** (1 / k**1.5)
    return r

if __name__ == "__main__":
    currtime = time()
    N = 10
    po = Pool()
    res = po.map_async(CostlyFunction,((i,) for i in xrange(N)))
    w = sum(res.get())
    print w
    print '2: parallel: time elapsed:', time() - currtime

这篇关于multiprocessing.Pool 示例的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)