如何在 Python 进程之间共享数据?

How to share data between Python processes?(如何在 Python 进程之间共享数据?)
本文介绍了如何在 Python 进程之间共享数据?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在使用多处理为我的 Python 应用程序创建一个子进程.我想在我的父进程和子进程之间共享数据.需要说明的是,我需要异步共享这个,也就是说子进程和父进程会在代码运行期间更新数据.

I'm using multiprocessing to create a sub-process to my Python app. I would like to share data between my parent process and the child process. it's important to mention that I need to share this asynchronously, means that the child process and the parent process will update the data during the code running.

最好的方法是什么?

推荐答案

这是python文档中的一个简单示例 -

This is one simple example from python documentation -

from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, 'hello'])

if __name__ == '__main__':
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, 'hello']"
    p.join()

你也可以使用管道,有关详细信息,请参阅 - https://docs.python.org/2/library/multiprocessing.html

You can use pipe as well, Refer for more details - https://docs.python.org/2/library/multiprocessing.html

这篇关于如何在 Python 进程之间共享数据?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)