如何从 Python 中的字符串中获取整数值?

How to get integer values from a string in Python?(如何从 Python 中的字符串中获取整数值?)
本文介绍了如何从 Python 中的字符串中获取整数值?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

假设我有一个字符串

string1 = "498results should get" 

现在我只需要从像 498 这样的字符串中获取整数值.在这里我不想使用 list slicing 因为整数值可能会像这些示例一样增加:

Now I need to get only integer values from the string like 498. Here I don't want to use list slicing because the integer values may increase like these examples:

string2 = "49867results should get" 
string3 = "497543results should get" 

所以我只想以完全相同的顺序从字符串中获取整数值.我的意思是像 498,49867,497543 分别来自 string1,string2,string3.

So I want to get only integer values out from the string exactly in the same order. I mean like 498,49867,497543 from string1,string2,string3 respectively.

谁能用一两行告诉我如何做到这一点?

Can anyone let me know how to do this in a one or two lines?

推荐答案

>>> import re
>>> string1 = "498results should get"
>>> int(re.search(r'd+', string1).group())
498

如果字符串中有多个整数:

If there are multiple integers in the string:

>>> map(int, re.findall(r'd+', string1))
[498]

这篇关于如何从 Python 中的字符串中获取整数值?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)