如何将字典中的字符串值转换为 int/float 数据类型?

How to convert string values from a dictionary, into int/float datatypes?(如何将字典中的字符串值转换为 int/float 数据类型?)
本文介绍了如何将字典中的字符串值转换为 int/float 数据类型?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个字典列表如下:

I have a list of dictionaries as follows:

list = [ { 'a':'1' , 'b':'2' , 'c':'3' }, { 'd':'4' , 'e':'5' , 'f':'6' } ]

如何将列表中每个字典的值转换为 int/float?

How do I convert the values of each dictionary inside the list to int/float?

这样就变成了:

list = [ { 'a':1 , 'b':2 , 'c':3 }, { 'd':4 , 'e':5 , 'f':6 } ]

谢谢.

推荐答案

for sub in the_list:
    for key in sub:
        sub[key] = int(sub[key])

将其转换为 int 而不是字符串.

Gives it a casting as an int instead of as a string.

这篇关于如何将字典中的字符串值转换为 int/float 数据类型?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)